• Title/Summary/Keyword: electrical and optical properties

Search Result 2,227, Processing Time 0.028 seconds

Electrical and Optical Properties of Phosphorescent Organic Light-Emitting Devices with a TAPC Host

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.84-87
    • /
    • 2011
  • We fabricated phosphorescent organic light-emitting devices with a 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) host layer. Two kinds of devices, one of ITO/TAPC/TAPC:FIrpic/TAZ/LiF/Al (device A) and one of ITO/TAPC:FIrpic/TAPC/TAZ/LiF/Al (device B), were prepared to investigate electrical and optical properties. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic) and 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (TAZ) were used as a blue phosphorescent guest material and an electron transport layer, respectively. The TAPC layer in device B strongly contributes to whitish emission, higher driving voltage, and lower current efficiency characteristics compared with device A. The mechanisms of these electrical and optical characteristics of the devices were investigated.

Influence of Ag thickness on properties of AZO/Ag/AZO Multi-layer Thin Films (AZO/Ag/AZO 다층박막의 Ag두께에 따른 특성 연구)

  • Yeon, Je ho;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.27-31
    • /
    • 2017
  • AZO/Ag/AZO multi-layer films deposited on glass substrate by RF magnetron sputtering and thermal evaporator have a much better electrical properties than Al-doped ZnO thin films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. The optimum thickness of Ag layers was determined to be $90{\AA}$ for high optical transmittance and good electrical conductivity. The Ag layers thickness $90{\AA}$ is an optical transmittance greater than 80% of visible light and the obtained multilayer thin film with the low resistivity of $8.05{\times}10-3{\Omega}cm$ and the low sheet resistance $5.331{\Omega}/sq$. Applying to TCO and Solar electrode will improve efficiency.

  • PDF

Transparent conducting ZnO thin films deposited by a Sol-gel method (솔젤법으로 제작한 ZnO 박막의 광전도특성 연구)

  • Kim, Gyeong-Tae;Kim, Gwan-Ha;Kim, Jong-Gyu;U, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.320-320
    • /
    • 2007
  • Nowadays, ZnO thin films are investigated as transparent conductive electrodes for use in optoelectronics devices including flat displays, thin films transistors, solar cells because of their unique optical and electrical properties. For the use as transparent conductive electrodes, a film has to have low resistivity, high absorption in the ultra violent light region and high optical transmission in the visible region. Different technologies such as electron beam evaporation, chemical vapor deposition, laser evaporation, DC and RF magnetron sputtering and have been reported to produce thin films of ZnO with adequate performance for applications. However, highly transparent and conductive doped-ZnO thin films deposited by a metal-organic decomposition method have not been reported before. In this work, the effect of dopant concentration, heating treatment and annealing in areducing atmosphere on the structure, morphology, electrical and optical properties of ZnO thin films deposited on glass substrates by a Sol-gel method are investigated.

  • PDF

A Study on the Characteristics of NiInZnO/Ag/NiInZnO Multilayer Thin Films Deposited by RF/DC Magnetron Sputter According to the Thickness of Ag Insertion Layer (RF/DC 마그네트론 스퍼터로 제조한 NiInZnO/Ag/NiInZnO 다층박막의 Ag 금속 삽입층 두께 변화에 따른 특성 연구)

  • Kim, Nam-Ho;Kim, Eun-Mi;Heo, Gi-Seok;Yeo, In-Seon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2014-2018
    • /
    • 2016
  • Transparent, conductive electrode films, showing the particular characteristics of good conductivity and high transparency, are of considerable research interest because of their potential for use in opto-electronic applications, such as smart window, photovoltaic cells and flat panel displays. Multilayer transparent electrodes, having a much lower electrical resistance than widely-used transparent conducting oxide electrodes, were prepared by using RF/DC magnetron sputtering system. The multilayer structure consisted of three layers, [NiInZnO(NIZO)/Ag/NIZO]. The optical and electrical properties of the multilayered NIZO/Ag/NIZO structure were investigated in relation to the thickness of each layer. The optical and electrical characteristics of multilayer structures have been investigated as a function of the Ag and NIZO film thickness. High-quality transparent conductive films have been obtained, with sheet resistance of $9.8{\Omega}/sq$ for Ag film thickness of 8 nm. Also the multilayer films of inserted Ag 8 nm thickness showed a high optical transmittance above 93% in the visible range. The electrical and optical properties of the new multilayer films were mainly dependent on the thickness of Ag insertion layer.

Effect of Annealing Temperature on the Properties of ITO/TiO2 Films Deposited with RF Magnetron Sputtering (RF 마그네트론 스퍼터링에 의해 증착된 ITO/TiO2 적층 박막의 어닐링 효과)

  • Lee, Young-Jin;Heo, Sung-Bo;Lee, Hak-Min;Kim, Yu-Sung;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.5
    • /
    • pp.244-248
    • /
    • 2012
  • ITO/$TiO_2$ films were deposited by RF magnetron sputtering on glass substrates and then the effect of vacuum annealing on the structural, optical and electrical properties of the films was investigated. The structural, optical and electrical properties are strongly related to annealing temperature. The films annealed at $300^{\circ}C$ showed a grain size of 40.9 nm, which was larger than as-deposited amorphous films. The optical transmittance in the visible wavelength region also increased, while the electrical resistivity decreased. The ITO/$TiO_2$ films annealed at $300^{\circ}C$ showed the highest optical transmittance of 81% and also showed the lowest electrical resistivity of $3.05{\times}10^{-4}{\Omega}cm$, in this study.

A Study on the Electrical and Optical Properties of CdS Thin Films Deposited with Different Conditions for Solar Cell Applications (태양전지용 CdS 박막의 제조 조건에 따른 전기적 광학적 특성에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.620-628
    • /
    • 2008
  • Cadmium sulphide (CdS) thin film, which is used as a window layer of heterojunction solar cell, on the glass substrate was deposited by vacuum evaporation. Effects of deposition conditions such as the source and substrate temperature on electrical and optical properties of CdS films was investigated. As the source temperature was increased, the deposition rate of CdS films was increased. In addition, the optical transmittance and the electrical resistivity of CdS films were decreased as the source temperature was increased. This results were attributed to the increase of excess Cd amount in the film. The crystal structure of CdS films exhibited the hexagonal phase with preferential orientation of the (002) plane. As the substrate temperature was increased, the crystal structure of CdS films was improved and the resistivity of the films was increased due to the decrease of excess Cd in film.

Electrical and Optical Properties in Transparent Conducting Oxides: Effect of Ultra Violet Irradiation

  • So, Byung-Soo;Hwang, Jin-Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.65-69
    • /
    • 2007
  • A design of experiments was applied in order to investigate the effect of processing variables in UV irradiation on the electrical/optical properties in indium-zinc oxide thin films, The processing variables, equivalently input variables are listed as UV irradiation time, oxygen flow rate, and chamber pressure. The statistical significance of Ultra Violet (UV) treatment was confirmed using a paired-t test. The full factorial $2^3$ design was employed to determine significant main and interaction effects in UV irradiation process. The chamber pressure and the interaction between UV irradiation time and $O_2$ flow rate were found to be statistically significant at the significance level of 0.1. Furthermore, the optimized approach was proposed in achieving the improved conductivity after UV irradiation.

  • PDF

Fabrication and electro optical properties of stressed liquid crystal cell

  • Lee, Jung-Min;Park, Jin-Seol;Kang, Dae-Seung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.681-682
    • /
    • 2009
  • We fabricated a stressed liquid crystal cell by mixing liquid crystal with a photo-polymer. By carefully choosing the mixing ratio between liquid crystal and the polymer, and by suitable mechanical shearing of the substrates, we demonstrated feasible electro optical properties for displays.

  • PDF

Electrical and Optical Properties of Zinc Oxide Thin Films Deposited Using Atomic Layer Deposition

  • Kim, Jeong-Eun;Bae, Seung-Muk;Yang, Hee-Sun;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.353-356
    • /
    • 2010
  • Zinc oxide (ZnO) thin films were deposited using atomic layer deposition. The electrical and optical properties were characterized using Hall measurements, spectroscopic ellipsometry and UV-visible spectrophotometry. The electronic concentration and the mobility were found to be critically dependent on the deposition temperature, exhibiting increased resistivity and reduced electronic mobility at low temperature. The corresponding optical properties were measured as a function of photon energy ranging from 1.5 to 5.0 eV. The simulated extinction coefficients allowed the determination of optical band gaps, i.e., ranging from 3.36 to 3.41 eV. The electronic carrier concentration appears to be related to the reduction in the corresponding band gap in ZnO thin films.

Effect of Electron Irradiation Energy on the Properties of GZO/SiO2 Thin Films on Polycarbonate (PC 기판위에 증착된 SiO2/GZO박막의 전자빔 조사에너지에 따른 특성 변화)

  • Heo, Sung-Bo;Park, Min-Jae;Jung, Uoo-Chang;Kim, Dae-Il;Cha, Byung-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.341-346
    • /
    • 2014
  • Ga-doped ZnO (GZO) single layer and $SiO_2/GZO$ bi-layered films were deposited on Polycarbonate(PC) substrate by radio frequency magnetron sputtering. Influence of the structural, electrical, and optical properties of the films was considered. We have considered the influence of electron irradiation energy of 450 and 900 eV on the stuctural, electrical and optical properties of $SiO_2/GZO$ thin films. The optical transmittance in a visible wave length region increased with the electron irradiation energy. The electrical resistivity of the films were dependent on the electron's irradiation energy. The $SiO_2/GZO$ films irradiated at 900 eV were showen the lowest resistivity of $7.8{\times}10^{-3}{\Omega}cm$. The film which was irradiated by electron at 900 eV shows 84.3% optical transmittance and also shows lower than contact angle of $58^{\circ}$ in this study.