• Title/Summary/Keyword: electrical and optical properties

Search Result 2,224, Processing Time 0.026 seconds

A study on the growth and electrical-optical characteristics of undoped-InSe and Sn-doped Inse single crystals by vertical bridgman method (수직 Bridgman법에 의한 InSe 단결정의 성장 및 Sn 도핑에 따른 전기.광학적 특성에 관한 연구)

  • 정희준;송필근;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.481-484
    • /
    • 1999
  • The undoped-InSe and Sn-doped InSe single crystals were grown by vertical Bridgman method and their properties were invesigated. These crystals were obtained by lowering the quartz ampoule for growth in the furnace and growth rate at optimum condition is 0.4mm/hr. The orientations and the crystallinites of these crystals were identified by X-ray diffraction(XRD), double crystal rocking curve(DCRC) and etch-pit density(EPD) measurements. From the Raman spectrum at room temperature, TO, LO modes together with their overtones and combinations were observed. Optical properties were investigated by photoluminescence at 12K and direct band gap of these crystals obtained from optical absorption spectrum. Compared with undoped-lnSe, electrical properties of Sn-doped InSe were increased and the electrical conductivity type were n-type. But electrical properties along growth direction of crystals and radial direction of wafer showed nearly uniform distribution.

  • PDF

Electrical and Optical Properties of Al-doped ZnO Films Deposited by Atomic Layer Deposition (Atomic Layer Deposition법에 의한 Al-doped ZnO Films의 전기적 및 광학적 특성)

  • An, Ha-Rim;Baek, Seong-Ho;Park, Il-Kyu;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.469-475
    • /
    • 2013
  • Al-doped ZnO(AZO) thin films were synthesized using atomid layer deposition(ALD), which acurately controlled the uniform film thickness of the AZO thin films. To investigate the electrical and optical properites of the AZO thin films, AZO films using ALD was controlled to be three different thicknesses (50 nm, 100 nm, and 150 nm). The structural, chemical, electrical, and optical properties of the AZO thin films were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field-emssion scanning electron microscopy, atomic force microscopy, Hall measurement system, and UV-Vis spectrophotometry. As the thickness of the AZO thin films increased, the crystallinity of the AZO thin films gradually increased, and the surface morphology of the AZO thin films were transformed from a porous structure to a dense structure. The average surface roughnesses of the samples using atomic force microscopy were ~3.01 nm, ~2.89 nm, and ~2.44 nm, respectively. As the thickness of the AZO filmsincreased, the surface roughness decreased gradually. These results affect the electrical and optical properties of AZO thin films. Therefore, the thickest AZO thin films with 150 nm exhibited excellent resistivity (${\sim}7.00{\times}10^{-4}{\Omega}{\cdot}cm$), high transmittance (~83.2 %), and the best FOM ($5.71{\times}10^{-3}{\Omega}^{-1}$). AZO thin films fabricated using ALD may be used as a promising cadidate of TCO materials for optoelectronic applications.

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.148-151
    • /
    • 2013
  • The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

Electrical and Optical Properties of ITO Thin Film by CMP Process Parameter (CMP 공정이 ITO 박막의 전기적.광학적 특성에 미치는 영향)

  • Choi, Gwon-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.354-355
    • /
    • 2005
  • Indium tin oxide (ITO) thin film was polished by chemical mechanical polishing (CMP) by the change of process parameters for the improvement of electrical and optical properties of ITO thin film. Light transparent efficiency of ITO thin film was improved after CMP process at the optimized process parameters compared to that before CMP process.

  • PDF

A Study of Optical Properties of Assembled Plasma Display Panel with 3-D Optical Code

  • Park, Hyun-Myung;Kang, Jungwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.67-71
    • /
    • 2012
  • The optical properties of PDP, such as the transmittance and reflectance, were analyzed with 3D optical code. Three different ITO-less structures in the front panel are examined. In the assembled panel study, the test 1 structure shows 16.6% and 10.2% higher reflectance than the structures of tests 2 and 3, respectively. In order to check the validation of the simulation result, three 7.5-inch test panels having the same geometry and property are fabricated as simulation models. The calculated reflective properties are compared to the measured data from real panels. The relative difference extracted from the simulation and measurement methods is less than 4.9% and are well matched.

Single crystals growth and properties of $LiNbO_3$ doped with MgO or ZnO : (II) The electrical and optical properties (MgO 또는 ZnO를 첨가한 $LiNbO_3$단결정 성장 및 특성 : (II) 전기적 및 광학적 특성)

  • Cho, Hyun;Shim, Kwang-Bo;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.532-542
    • /
    • 1996
  • The electrical and optical properties of the annealed $LiNbO_{3}$ single crystal with congruently melting composition and MgO or ZnO doped $LiNbO_{3}$ single crystal grown by the FZ method. The electrical and optical properties such as electrical conductivity, dielectric constant (Curie temperature), electro-mechanical coupling factor, optical transmittance and refractive indices of the grown crystals were measured and the nonlinear refractive indices of the grown crystals were calculated theoretically. The doping effects of MgO and ZnO were investigated by comparing the electrical and optical properties of the undoped $LiNbO_{3}$ single crystal and those of the $LiNbO_{3}$ single crystals doped with MgO or ZnO.

  • PDF

Properties of Nitrogen and Aluminum Codoped ZnO Thin Films Grown by Radio-frequency Magnetron Sputtering (라디오파 마그네트론 스퍼터링으로 성장한 질소와 알루미늄 도핑된 ZnO 박막의 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.129-133
    • /
    • 2008
  • Nitrogen and aluminum codoped ZnO(NAZO) thin films were grown on glass substrates with changing the nitrogen flow ratio by radio-frequency magnetron sputtering. The structural, optical, and electrical properties of the NAZO films were investigated. The surface morphologies and the structural properties of the thin films were analyzed by using the X-ray diffraction and scanning electron microscopy. The NAZO thin film, deposited at nitrogen flow ratio of 0%, showed a strongly c-axis preferred orientation and the lowest resistivity of $3.2{\times}10^{-3}{\Omega}cm$. The intensity of ZnO(002) diffraction peak was decreased gradually with increasing the nitrogen flow ratio. The optical properties of the films were measured by UV-VIS spectrophotometer and the optical transmittances for all the samples were found to be an average 90% in the visible range. Based on the transmittance value, the optical bandgap energy for the NAZO thin film deposited at nitrogen flow ratio of 0% was determined to be 3.46 eV. As for the electrical properties, the carrier concentration and the hall mobility were decreased, but the electrical resistivity was increased as the nitrogen flow ratio was increased.

Optical properties of the glass fiber by adding Ga$_2$O$_3$ in the SiO$_2$-PbO-K$_2$O-Al$_2$O$_3$ system for Infrared sensor (Ga$_2$O$_3$ 첨가에 따른 SiO$_2$-PbO-K$_2$O-Al$_2$O$_3$계 적외선 센서용 Glass fiber의 광학적 특성)

  • 윤상하;강월호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.68-71
    • /
    • 1996
  • In the study, the thermal and optical properties of SiO$_2$-PbO-K$_2$O-Al$_2$O$_3$ g1asses were investigated. According to Ga$_2$O$_3$ addictions, the properties of bulk glass, transition temperature and softening temperature were increased, whereas thermal expansion coefficient was decreased; In the optical properties, refractive index was increased, and IR cut-off wavelength was enlarged from 4.64$\mu\textrm{m}$ to 5.22$\mu\textrm{m}$. But, the optical loss of fiber was decreased.

  • PDF

Electrical and Optical Properties of In-doped CdS Films Prepared by Vacuum Evaporation (진공증착법으로 제조한 CdS:In 박막의 전기 및 광학적 특성)

  • 김시열;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.101-104
    • /
    • 1992
  • In-doped CdS thin films have been deposited at 150$^{\circ}C$ by simultaneous thermal evaporation of CdS and In. Deposition rate and film thickness were 8A/sec and about 1um, respectively. Indium doping concentration of films varied as Indium source temperature from 500$^{\circ}C$ to 700˚. Properties of In-CdS films have been investigatied by measurements of electrical resistivity, Hall effect, X-ray diffraction and optical trasmission spectra. The conductivity of these films was always n-type. The resistivity, carrier concentration, mobility and optical band gap dependence on Indium source temperature are reported. Carrier concentration and mobility of In-CdS films increased with increasing Indium source temperature: then they decreased. The variation of the optical band gap of In-CdS thin films are related to carrier concentration.

  • PDF

Post Deposition Annealing Effect on the Structural, Electrical and Optical Properties of ZnO/Ag/ZnO Thin Films

  • Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • Transparent conductive ZnO/Ag/ZnO (ZAZ) multilayer films were deposited by Radio frequency (RF) magnetron sputtering and direct current (DC) magnetron sputtering. The effects of post deposition vacuum annealing temperature on the structural, electrical and optical properties of the ZAZ multilayer films were investigated. The thickness of ZAZ films is kept constant at ZnO 50 nm/Ag 5nm/ZnO 45 nm, while the vacuum annealing temperatures were varied from 200 and $400^{\circ}C$, respectively. As-deposited ZAZ films exhibit a sheet resistance of $6.1{\Omega}/{\Box}$ and optical transmittance of 72.7%. By increasing annealing temperature to $200^{\circ}C$, the resistivity decreased to as low as $5.3{\Omega}/{\Box}$ and optical transmittance also increased to as high as 82.1%. Post-deposition annealing of ZAZ multilayer films lead to considerably lower electrical resistivity and higher optical transparency, simultaneously by increased crystallization of the films.