• 제목/요약/키워드: electrical actuation

검색결과 136건 처리시간 0.029초

A TERVO SYSTEM WITH RECUNANT ACYUATORS

  • Choi, Gang-Hyeon;Kobayashi, Hisato;Nakamura, Hideo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.219-222
    • /
    • 1995
  • This paper presents a control law of multiple actuation servo systems. Multiple actuation systems have an ability to solve some difficult engineering problems; Coulomb friction, backlash, and disturbance. This fact is shown by basic experiments as well as theoretical analysis. The proposed control strategy remarkably improves the performance comparing with conventional single actuation systems.

  • PDF

See-saw Type RF MEMS Switch with Narrow Gap Vertical Comb

  • Kang, Sung-Chan;Moon, Sung-Soo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권3호
    • /
    • pp.177-182
    • /
    • 2007
  • This paper presents the see-saw type RF MEMS switch based on a single crystalline silicon structure with narrow gap vertical comb. Low actuation voltage and high isolation are key features to be solved in electrostatic RF MEMS switch design. Since these parameters in conventional parallel plate RF MEMS switch designs are in trade-off relationship, both requirements cannot be met simultaneously. In the vertical comb design, however, the actuation voltage is independent of the vertical separation distance between the contact electrodes. Therefore, the large separation gap between contact electrodes is implemented to achieve high isolation. We have designed and fabricated RF MEMS switch which has 46dB isolation at 5GHz, 0.9dB insertion loss at 5GHz and 40V actuation voltage.

A Single-Pole, Eight-Throw, Radio-Frequency, MicroElectroMechanical Systems Switch for Multi-Band / Multi-Mode Front-End Module

  • Kang, Sung-Chan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • 센서학회지
    • /
    • 제20권2호
    • /
    • pp.77-81
    • /
    • 2011
  • This paper presents a single-pole eight-throw(SP8T) switch based on proposed a radio-frequency(RF) microelectromechanical systems (MEMS) switches. The proposed switch was driven by a double stop(DS) comb drive, with a lateral resistive contact. Additionally, the proposed switch was designed to have tapered signal line and bi-directionally actuated. A forward actuation connects between signal lines and contact part, and the output becomes on-state. A reverse actuation connects between ground lines and contact part, and the output becomes off-state. The SP8T switch of 3-stage tree topology was developed based on an arrangement of the proposed RF MEMS switches. The developed SP8T switch had an actuation voltage of 12 V, an insertion loss of 1.3 dB, a return loss of 15.1 dB, and an isolation of 31.4 dB at 6 GHz.

Hot Firing Test of a Quadrature NEA SSD9103S1 Configuration

  • Ja-Chun, Koo;Hee-Sung, Park;Max, Guba
    • International Journal of Aerospace System Engineering
    • /
    • 제9권2호
    • /
    • pp.1-9
    • /
    • 2022
  • The NEA release mechanism is used to provide restraint and release functions with low shock for critical deployment operations on solar arrays after launch. The GK3 solar array consists of 2 wings and 6 hold down points per panel. The NEA SSD9103S1 is a part of the GK3 solar array hold-down and release mechanism. Each NEA unit is equipped with two Z-diodes which provide power to a NEA unit connected in series after actuation of the fuse wire. This paper presents the hot firing test results of a quadrature NEA SSD9103S1 configuration. One output powers a maximum of 4 NEA SSD9103S1 units simultaneously. The necessary actuation pulse duration has been determined to meet margin requirement for thermal energy of minimum 4. Actuation thermal energy difference is about 6.6% between each half of two fired serial NEAs. Thermal energy margin at worst case is minimum 5.9 in case of an actuation pulse duration of 500 ms. Two series Zener impedance depend on current applied has been characterized by an additional actuation after all fuse wires are open circuit. Total number of actuation commands to the GK3 NEA unit reduce drastically from 24 in case of single NEA configuration down to 8 in case of parallel and quadrature NEA configurations. It can be accommodated by the existing HP2U Pyro design without any impact.

Flexible Patch Rectennas for Wireless Actuation of Cellulose Electro-active Paper Actuator

  • Yang, Sang-Yeol;Kim, Jae-Hwan;Song, Kyo-D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.954-958
    • /
    • 2012
  • This paper reports a flexible patch rectenna for wireless actuation of cellulose electro-active paper actuator (EAPap). The patch rectenna consists of rectifying circuit layer and ground layer, which converts microwave to dc power so as to wirelessly supply the power to the actuator. Patch rectennas are designed with different slot length at the ground layer. The fabricated devices are characterized depending on different substrates and polarization angles. The EAPap integrated with the patch rectenna is actuated by the microwave power. Detailed fabrication, characterization and demonstration of the integrated rectenna-EAPap actuator are explained.

Electrically-induced actuation for open-loop control to cancel self-excitation vibration

  • Makihara, Kanjuro;Ecker, Horst
    • Smart Structures and Systems
    • /
    • 제9권2호
    • /
    • pp.189-206
    • /
    • 2012
  • This paper focuses on the actuation system combined with a piezoelectric transducer and an electric circuit, which leads to a new insight; the electric actuation system is equivalent to mechanical variable-stiffness actuation systems. By controlling the switch in the circuit, the electric status of the piezoelectric transducer is changed, and consequently a variable-stiffness mechanism is achieved on the electric actuator. This proposed actuator features a shift in the equilibrium point of force, while conventional electrically-induced variable-stiffness actuators feature the variation of the stiffness value. We intensively focus on the equilibrium shift in the actuation system, which has been neglected. The stiffness of the variable-stiffness actuator is periodically modulated by controlling the switch, to suppress the vibration of the system in an open-loop way. It is proved that this electric actuator is equivalent to its mechanical counterpart, and that the electrical version has some practical advantages over the mechanical one. Furthermore, another kind of electrically-induced variable-stiffness actuator, using an energy-recycling mechanism is also discussed from the viewpoint of open-loop vibration control. Extensive numerical simulations provide comprehensive assessment on both electrically-induced variable-stiffness actuators employed for open-loop vibration control.

Mechanically Modulated Actuators and Branched Finger Detectors for Nano-Precision MEMS Applications

  • Cho, Young-Ho;Lee, Won-Chul;Han, Ki-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.39.1-39
    • /
    • 2002
  • We present nanoactuators and nanodetectors for high-precision Micro Electro Mechanical System (MEMS) applications. Major technical difficulties in the high-precision MEMS are arising from the fabrication uncertainty and electrical noise problems. In this paper, we present high-precision actuators and detectors, overcoming the technical limitations placed by the conventional MEMS technology. For the nano-precision actuation, we present a nonlinearly modulated digital actuator (NMDA). NMDA composed of a digital microactuator and a nonlinear micromechanical modulator. The nonlinear micromechanical modulator is intended to purify the actuation errors in the stroke of the digital a...

  • PDF

Force Distribution Algorithms For Singularity-Free 3-DOF Parallel Haptic Device With Redundant Actuation

  • Kim, Tae-Ju;Chung, Goo-Bong;Yi, Byung-Ju;Seo, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1598-1602
    • /
    • 2003
  • The parallel-type mechanism provides more accurate and stiff motion than the serial-type mechanism. However, in case of using the haptic device, the performance of the force reflection can be deteriorated due to the singular points existing in workspace. In this paper, we propose a redundantly actuated parallel 3-DOF haptic device, which is singularity-free in the workspace and has an improved force reflection capability. In addition, we propose a new force distribution algorithm, which can reflect force of both high and low resolution, using two sets of actuator with different size. Redundant actuators are attached to the base frame in order to minimize the inertia of the system. Moreover, a wire and gear reduction system is employed to achieve high force reflection along with soft feeling. We confirm the performance of the force reflection capability throughout simulation.

  • PDF

미세 간극 수직 콤을 이용한 저 전압 고 격리도 단결정 RF MEMS 스위치 (Low-voltage high-isolation RF MEMS switch based on a single crystalline silicon structure with fine gap vertical comb)

  • 문성수;김현철;전국진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.953-956
    • /
    • 2005
  • Low voltage actuation and high isolation characteristics are key features to be solved in electrostatic RF switch design. Since these parameters in the conventional parallel plate MEMS switch design are in trade-off relation, both requirements cannot be met simultaneously. In vertical comb design, however, the actuation voltage is independent to the vertical separation distance between the contact electrodes. Then, we can design the large separation distance between contact electrodes to get high isolation. We have designed an RF MEMS switch which has -40dB isolation at 5 GHz and 6 V operation voltages. The characteristics of the fabricated switch are being evaluate.

  • PDF

Computation of Beam Stress and RF Performance of a Thin Film Based Q-Band Optimized RF MEMS Switch

  • Singh, Tejinder
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권4호
    • /
    • pp.173-178
    • /
    • 2015
  • In lieu of the excellent radio frequency (RF) performance of microelectromechanical system ( MEMS) switches, these micro switches need higher actuation voltage for their operation. This requirement is secondary to concerns over the swtiches’ reliability. This paper reports high reliability operation of RF MEMS switches with low voltage requirements. The proposed switch is optimised to perform in the Q-band, which results in actuation voltage of just 16.4 V. The mechanical stress gradient in the thin micro membrane is computed by simulating von Mises stress in a multi-physics environment that results in 90.4 MPa stress. The computed spring constant for the membrane is 3.02 N/m. The switch results in excellent RF performance with simulated isolation of above 38 dB, insertion loss of less than 0.35 dB and return loss of above 30 dB in the Q-band.