• 제목/요약/키워드: electric work

검색결과 1,035건 처리시간 0.024초

헬리컬기어 냉간단조 금형의 정밀방전가공 (Precision Electric Discharge Machining of a Cold Forging Die for Helical Gear Manufacturing)

  • 권정재;전병윤;전만수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.158-161
    • /
    • 2005
  • In this paper, the precision electric discharge machining technology, the powder electric discharge machining technology, is applied to making a cold forging die for making the helical type of clutch gear. Various working conditions are investigated with emphasis on reduction of the electrode wear and enhancement of the surface roughness. Through the research work, the key technology of making the helical gear forging dies is achieved.

  • PDF

인공지능을 적용한 전력 시스템을 위한 보안 가이드라인 (Guideline on Security Measures and Implementation of Power System Utilizing AI Technology)

  • 최인지;장민해;최문석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.399-404
    • /
    • 2020
  • There are many attempts to apply AI technology to diagnose facilities or improve the work efficiency of the power industry. The emergence of new machine learning technologies, such as deep learning, is accelerating the digital transformation of the power sector. The problem is that traditional power systems face security risks when adopting state-of-the-art AI systems. This adoption has convergence characteristics and reveals new cybersecurity threats and vulnerabilities to the power system. This paper deals with the security measures and implementations of the power system using machine learning. Through building a commercial facility operations forecasting system using machine learning technology utilizing power big data, this paper identifies and addresses security vulnerabilities that must compensated to protect customer information and power system safety. Furthermore, it provides security guidelines by generalizing security measures to be considered when applying AI.

나노 소재 기반의 전기장 투과 전극에 관한 연구동향 (Review on Electric-field Transparent Conduct Electrodes Based on Nanomaterials)

  • 이재형;신재혁;이상일;박원일
    • 마이크로전자및패키징학회지
    • /
    • 제27권1호
    • /
    • pp.9-15
    • /
    • 2020
  • The 'field-effect' underlies the operation of most conventional electronic devices. However, effective control and implementation of the field-effect in semiconductor devices are limited due to screening of the electric-field by conducting electrodes. Thus far, the electronic devices have necessarily been designed to avoid or minimize the electric-field screening effect. As an alternative approach to this, a new type of conducting electrodes which would be transparent to both visible light and electric-field while being electrically conductive have been developed. Here, we define these electrodes as 'electric-field transparent electrodes' and provide a review on related work. Particular attention is paid to the material selection and design strategies to enhance the electric-field transparency of the electrodes while maintaining good electrical conductivity and optical transparency. We then introduce potential applications of the electric-field transparent electrodes in electronic and optoelectronic devices.

Anatomy of a flare-producing current layer dynamically formed in a coronal magnetic structure

  • Magara, Tetsuya
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.41.3-42
    • /
    • 2016
  • No matter how intense magnetic flux it contains, a coronal magnetic structure has little free magnetic energy when a composing magnetic field is close to a potential field, or current-free field where no volume electric current flows. What kind of electric current system is developed is therefore a key to evaluating the activity of a coronal magnetic structure. Since the corona is a highly conductive medium, a coronal electric current tends to survive without being dissipated, so the free magnetic energy provided by a coronal electric current is normally hard to release in the corona. This work aims at clarifying how a coronal electric current system is structurally developed into a system responsible for producing a flare. Toward this end, we perform diffusive MHD simulations for the emergence of a magnetic flux tube with different twist applied to it, and go through the process of structuring a coronal electric current in a twisted flux tube emerging to form a coronal magnetic structure. Interestingly, when a strongly twisted flux tube emerges, there spontaneously forms a structure inside the flux tube, where a coronal electric current changes flow pattern from field-aligned dominant to cross-field dominant. We demonstrate that this structure plays a key role in releasing free magnetic energy via rapid dissipation of a coronal electric current, thereby producing a flare.

  • PDF

방사성 폐기물 작업 중의 피폭서량 예측 프로그램 개발 (Development of Exposure Level Prediction Program in Radioactive Waste Work)

  • 박원만;김윤혁;황주호
    • 대한인간공학회지
    • /
    • 제24권2호
    • /
    • pp.71-77
    • /
    • 2005
  • In spite of the importance of nuclear power as one of major electric energies in Korea, the nuclear safety has become the most serious social issue in the operation of the nuclear power plant. In this paper, a virtual work simulation program was developed to predict exposure dose during radiation work in radwaste storage. The work simulation program was developed. using $Java ^{TM}$applet and VRML-virtual reality modeling language. A numerical algorithm to find the optimal work path which minimize exposure dose during the given work, was developed and exposure dose on the optimal work path was compared with that on the shortest path. Comparing with the shortest path for the given work, the predicted optimal path consumed longer work time by II% but reduced total exposure dose by 46%. The simulation result showed that the exposure dose depended on not only work time, but also the distance between the worker and the radiation source. The developed simulation program could be a useful tool for the planning of radioactive waste work to increase the radiation safety of workers.

Descriptive Study of Occupational Accidents and their Causes among Electricity Distribution Company Workers at an Eight-year Period in Iran

  • Rahmani, Abdolrasoul;Khadem, Monireh;Madreseh, Elham;Aghaei, Habib-Allah;Raei, Mehdi;Karchani, Mohsen
    • Safety and Health at Work
    • /
    • 제4권3호
    • /
    • pp.160-165
    • /
    • 2013
  • Background: Occupational accidents are unplanned events that cause damage. The socio-economic impacts and human costs of accidents are tremendous around the world. Many fatalities happen every year in workplaces such as electricity distribution companies. Some electrical injuries are electrocution, electric shock, and burns. This study was conducted in an electricity distribution company (with rotational 12-hour shift work) in Iran during an 8-year period to survey descriptive factors of injuries. Methods: Variables collected included accident time, age of injured worker, employment type, work experience, injury cause, educational background, and other information about accidents. Results: Results indicated that most of the accidents occurred in summer, and 51.3% were during shift work. Worker negligence (malpractice) was the cause of 75% of deaths. Type of employment had a significant relationship with type of injuries (p < 0.05). Most injuries were electrical burns. Conclusion: High rate of accidents in summer may be due to the warm weather or insufficient professional skills in seasonal workers. Shift workers are at risk of sleep complaints leading to a high rate of work injuries. Acquiring knowledge about safety was related to job experiences. Temporary workers have no chance to work all year like permanent workers, therefore impressive experiences may be less in them. Because the lack of protective equipment and negligence are main causes of accidents, periodical inspections in workshops are necessary.

CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments

  • Jamshidi, Hamed;Nilsson, Hakan;Chernoray, Valery
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.113-123
    • /
    • 2015
  • The efficiency of the ventilation system is a key point for durable and reliable electric generators. The design of such system requires a detailed understanding of the air flow in the generator. Computational fluid dynamics (CFD) has the potential to resolve the lack of information in this field. The present work analyses the air flow inside a generator model. The model is designed using a CFD-based approach, and manufactured by taking into consideration the experimental and numerical requirements and limitations. The emphasis is on the possibility to accurately predict and experimentally measure the flow distribution inside the stator channels. A major part of the work is focused on the design of an intake and a fan that gives an evenly distributed flow with a high flow rate. The intake also serves as an accurate flowmeter. Experimental results are presented, of the total volume flow rate, the total pressure and velocity distributions. Steady-state CFD simulations are performed using the FOAM-extend CFD toolbox. The simulations are based on the multiple rotating reference frames method. The results from the frozen rotor and mixing plane rotor-stator coupling approaches are compared. It is shown that the fan design provides a sufficient flow rate for the stator channels, which is not the case without the fan or with a previous fan design. The detailed experimental and numerical results show an excellent agreement, proving that the results reliable.

LonWorks를 이용한 네트웍 시스템의 플로우제어에 관한 연구 (A Study on Flow Control of Network Systems with LonWorks)

  • 김병희;조광현;박경섭
    • 전자공학회논문지SC
    • /
    • 제37권5호
    • /
    • pp.13-21
    • /
    • 2000
  • 본 논문에서는 최근 각광받고 있는 산업용 제어네트웍 중 다양한 통신매체를 지원하고 상호응용성이 높은 LonWorks를 이용하여 실험실 규모의 네트웍을 구성하고 플로우제어기의 도입을 통한 성능향상을 검증한다. 이를 위해 일반적으로 개루프 시스템으로 운용되는 산업용네트웍에 네트웍 채널상태를 궤환받고 원형대기열을 설치하여 대기열에 있는 전송데이터의 개수와 전송데이터가 대기열에 입력되는 시간간격을 이용하는 플로우제어기를 도입함으로서 폐루프 시스템을 구성한다. 또한 실험을 통하여 전송률과 공정성이라는 성능지수를 토대로 제안된 플로우제어 네트웍 시스템의 성능향상을 검증한다.

  • PDF

연료전지 자동차용 R-134a 전동식 히트펌프 시스템 개발에 관한 연구 (A Study on Electronically Controlled R-134a Heat Pump System for a Fuel Cell Electric Vehicle (FCEV))

  • 이준경;이동혁;원종필
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.124-132
    • /
    • 2007
  • The main objective of this work is to investigate the characteristics of a heat pump system for fuel cell electric vehicle (FCEV). The present heat pump system adopts an electrically driven compressor running with R134a and uses the heat from the fuel cell stack as the heat source for the exterior heat exchanger. The experimental work has been done with various operating conditions such as different compressor speeds, fuel cell stack coolant temperatures and flow rates. The heating capacity was measured to be from 4 to 10 kW at $-20^{\circ}C$ ambient temperature, and the outlet temperature of interior heat exchanger was up to $70^{\circ}C$. After 30 seconds from start-up, the system reached a steady state and the heating capacity of 6.8 kW was acquired, and after 90 seconds, the air outlet temperature of interior heat exchanger became $35^{\circ}C$.

황화수소 정제용 아연계 분무건조 탈황제의 활성성분 함량 변경에 따른 물성 및 반응 특성 (The Effect of ZnO Content on the Performance of Spray-dried Zn-based Desulfurization Sorbent for H2 Cleanup)

  • 백점인;엄태형;이중범;제갈성;류청걸
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.482-490
    • /
    • 2014
  • Gaseous sulfur compound such as $H_2S$ or COS in coal- or biomass-derived hot syngas can be purified by solid sorbents at high temperatures. In this study, we investigated the physical properties and reactivity of solid regenerable desulfurization sorbents with 37.2, 41.9, and 46.5wt% ZnO to look into the ZnO content effect. The sorbents were produced by spray-drying method to apply to a fluidized-bed process. Sulfidation and regeneration reaction were carried out using a thermogravimetric analyzer. Sorbent prepared with 46.5wt% ZnO had physical properties suitable for a fluidized-bed process applications such as spherical shape, sufficient mechanical strength and density, high porosity and surface area. It showed high sulfur sorption capacity of 10.4wt% (ZnO utilization of 57%) at reaction temperatures of 500 and $650^{\circ}C$ for sulfidation and regeneration, respectively. However, the sulfur sorption capacity and ZnO utilization were significantly reduced and dimple shape appeared when the ZnO content decreased to 37.2 and 41.9wt%. Sulfur sorption capacity and regenerability were improved as reaction temperature increased within the experimental temperatures used in this work. The reaction temperature zones of $1500{\sim}550^{\circ}C$ and $650{\sim}700^{\circ}C$ are recommended for sulfidation and regeneration, respectively, to lead best reaction performances of the ZnO-based spray-dried sorbents developed in this work.