• Title/Summary/Keyword: electric probe

Search Result 231, Processing Time 0.027 seconds

Nondestructive Examination of Ferromagnetic Tube Using Magnetic Saturation Eddy Current Technique (자기포화 와전류기법에 의한 자성 튜브 비파괴검사)

  • Lee, Hee-Jong;Cho, Chan-Hee;Song, Seok-Yoon;Jee, Dong-Hyun;Jung, Jee-Hong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.407-415
    • /
    • 2008
  • The tubes in heat exchanger are typically made from copper alloy, stainless steel, carbon steel, titanium alloy material. type-439 ferritic stainless steel is ferromagnetic material, and furnish higher heat transfer rates than austenitic stainless steels and higher resistance to corrosion-induced flaws. Ferritic stainless steel can typically be found in low-pressure(LP) feedwater heaters and moisture separator reheaters(MSRs). LP feedwater heaters generally utilize thin wall type-439 stainless steel tubing, whereas MSRs typically employ a heavier wall tubing with integral fins. Service-induced damage can occur on the OD(outside diameter) surface of type-439 ferritic stainless steel tubing which is employed for MSRs tubing, and the most typical damage mechanism is vibration-induced tube-to-TSP(tube support plate) wear and fatigue cracking. The wear has been reported that occurs mainly on the OD surface. Accordingly, in this study, we have evaluated the flaw sizing capability of magnetic saturation eddy current technique using magnetic saturation probe and flawed specimen.

Development and Performance Evaluation of Aerosol Generator of MWCNTs for Inhalation Toxicology (흡입 독성 평가를 위한 다중벽 탄소나노튜브의 에어로졸 발생장치 개발 및 성능 평가)

  • Lee, Gun-Ho;Jeon, Ki Soo;Yu, Il Je;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.231-238
    • /
    • 2013
  • Carbon nanotubes (CNTs) are one of the nanomaterials that were discovered by Iijima in 1991 for the first time. CNTs have long cylindrical and axi-symmetric structures. CNTs are made by rolling graphene sheets. Because of their large length-to-diameter ratio, they are called nanotubes. CNTs are categorized as single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) based on the shell structures. CNTs are broadly used in various fields, such as scanning probe microscopy, ultra fine nano balance and medicine, due to their extraordinary thermal conductivity, electrical and mechanical properties. Because long, straight CNTs have the same shape as asbestos, which cause cancer in cells lining the lung, there have been many studies on the effects of MWCNTs on human health that have been conducted. Stable atomization of CNTs is very important for the estimation of inhalation toxicity. In the present study, electro-static assisted axial atomizer (EAAA), which is the instrument that uses MWCNTs and aerosolizes them by transforming the single fiber shape using ultrasonic dispersion and electric field, was invented. EAAA consists of a ultrasonic bath for dispersion of MWCNTs and a particle generator for atomizing single fibers. The performance evaluation was conducted in order to assess the possibilities of 6-hour straight atomization with stability, which is the suggested exposure time in a day for the estimation of inhalation toxicity.

Karyotypes of Pneumocystis carinii from Korean Rats (한국산 횐쥐 카리니주폐포자충의 핵형)

  • 홍성태;김병일
    • Parasites, Hosts and Diseases
    • /
    • v.30 no.3
    • /
    • pp.183-190
    • /
    • 1992
  • Molecular karyotyping was applied to Pneumocystis carinii (Pc) from two strains of experimental rats, Sprague Dawley(SD) and Fisher(F), in Korea. Field inversion gel electrophoresis and contour clamped homogeneous electric field electrophoresis resolved 15 chromosomal bands from the Pc. The size of the bands was estimated 270kb to 684kb from SD rats, and 273kb to 713 kb from F rats. The bands of 283 kb from SD rats and of 273 kb from F rats stained more brightly suggesting duplicated bands. Total number of chromosomes was at least 16, and total genomic size was estimated 7×106 bp. All of the bands from F rats hybridized to the probe of repeated DNA sequences of Pc and the band of 448 kb size was proved to contain rDNA sequences, but Pc. chromosome bands from SD rats showed no reactions to the probes. The 2 different karyotypes of p. carinii from 2 strains of rats were maintained consistently for 2 years.

  • PDF

Analysis and the measurement of the variation of electric field in air and oil using optical measuring system (광계측 시스템을 이용한 유.기중 코로나 방전의 전계변화 측정 및 비교분석)

  • Ma, Ji-Hoon;Ryu, Cheol-Hwi;Kang, Won-Jong;Chang, Yong-Moo;Koo, Ja_Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1668-1670
    • /
    • 2002
  • Since more than two decades, the conventional PD detecting systems have been employed in order to detect the partial discharges occurring inside the HV power apparatus for their diagnosis by use of different type of detection such as acoustic and UHF detection method. Regardless of their wide on-site application, a certain number of technical inconveniences have been disclosed as follows : multistage amplification. large volume, susceptible to external noise and high price. In this respect, the optical measurement techniques are widely proposed in these days in this concerned field ascribed to the following advantages : immune to external EMI noise and broad band response of the Pockels cell covering from DC to GHz. However, the reliability of several proposed techniques enabling to measure the electric field inside the large high power apparatus has not yet been well approved In this work, an optical measuring system, based on the Pockels effect, has been developed for measuring the field variation due to the corona discharges occurring in air and in oil. This system consists of He-Ne laser, single mode optical fiber, multi mode optical fiber, polarizing film, Y-cut LiNbO3 cell, photo detector, digital oscilloscope and personal computer with GPIB. For this purpose, optical probe has been specially designed and realized and put into the needle-plane electrode. Afterward, same measurement is carried out in oil. We demonstrate the characteristic of the optical measuring system and the measurement results.

  • PDF

Observation of Plasma Shape by Continuous dc and Pulsed dc (직류 방전과 펄스 직류 방전에 의한 플라즈마 형상 관찰)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Effects of bipolar pulse driving frequency between 50 kHz and 250 kHz on the discharge shapes were analyzed by measuring plasma characteristics by OES (Optical Emission Spectroscopy) and Langmuir probe. Plasma characteristics were modeled by a simple electric field analysis and fluid plasma modeling. Discharge shapes by a continuous dc and bipolar pulsed dc were different as a dome-type and a vertical column-type at the cathode. From OES, the intensity of 811.5 nm wavelength, the one of the main peaks of Ar, decreased to about 43% from a continuous dc to 100 kHz. For increasing from 100 kHz to 250 kHz, the intensity of 811.5 nm wavelength also decreased by 46%. The electron density decreased by 74% and the electron temperature increased by 36% at the specific position due to the smaller and denser discharge shape for increasing pulse frequency. Through the numerical analysis, the negative glow shape of a continuous dc were similar to the electric potential distribution by FEM (Finite Element Method). For the bipolar pulsed dc, we found that the electron temperature increased to maximum 10 eV due to the voltage spikes by the fast electron acceleration generated in pre-sheath. This may induce the electrons and ions from plasma to increase the energetic substrate bombardment for the dense thin film growth.

A Study on the Possibility of Construction Supervision by Geophysical Prospecting (지구 물리탐사에 의한 시공감리성 연구)

  • Shon, Ho-Woong
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.165-174
    • /
    • 1997
  • It is not possible to define the earth's interior because of it complicity. However, it can be interpreted directly and/ or indirectly. Geophysics is the subject of this study. To study the possibility of construction supervision by geophysical method, geophysical prospecting was performed and studied at the SamYang pumping well area in Cheju Island, where, although underground dam was constructed, the saline water invade the pumping well area. This study focuses on the construction supervision by electrical measurements. Two electric resistivity survey lines are installed in the pumping well site, and at each line electric survey was conducted at ebb and flow tides. To increase the data quality SP (self-potential) survey was also performed. As a result the geophysical exploration methods explained the defect of construction well, and It shows that geophysical probe can be a useful tool for the construction supervision.

  • PDF

Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of MWCNT-reinforced Polypropylene Nanocomposites (다중벽 탄소나노튜브강화 폴리프로필렌 나노복합재료의 전자파 차폐효과 및 기계적 특성)

  • Yim, Yoon-Ji;Seo, Min-Kang;Kim, Hak-Yong;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.494-499
    • /
    • 2012
  • In this work, the effect of multi-walled carbon nanotube (MWCNT) on electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of MWCNT-reinforced polypropylene (PP) nanocomposites were investigated with varying MWCNT content from 1 to 10 wt%. Electric resistance was tested using a 4-point-probe electric resistivity tester. The EMI SE of the nanocomposites was evaluated by means of the reflection and adsorption methods. The mechanical properties of the nanocomposites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The morphologies were observed by scanning electron microscopy (SEM). From the results, it was found that the EMI SE was enhanced with increasing MWCNT content, which played a key factor to determine the EMI SE. The $K_{IC}$ value was increased with increasing MWCNT content, whereas the value decreased above 5 wt% MWCNT content. This was probably considered that the MWCNT entangled with each other in PP due to an excess of MWCNT.

Study on CO2 Decomposition using Ar/CO2 Inductively Coupled Plasma (아르곤/이산화탄소 혼합가스의 유도 결합 플라즈마를 이용한 이산화탄소 분해 연구)

  • Kim, Kyung-Hyun;Kim, Kwan-Yong;Lee, Hyo-Chang;Chung, Chin-Wook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.135-140
    • /
    • 2015
  • Decomposition of carbon dioxide is studied using $Ar/CO_2$ mixture inductively coupled plasmas (ICP). Argon gas was added to generate plasma which has high electron density. To measure decomposition rate of $CO_2$, optical emission actinometry is used. Changing input power, pressure and mixture ratio, the plasma parameters and the spectrum intensity were measured using single Langmuir probe and spectroscope. The source characteristic of Carbon dioxide ICP observed from the obtained plasma parameters. The decomposition rate is evolved depending on the reaction and discharge mode. This result is analyzed with both the measurement of the plasma parameters and the dissociation mechanism of $CO_2$.

Verification of dilution ratio of the newly developed ejector-porous tube diluter for measurement of fine dust in coal-fired power plant stack (화력발전소 굴뚝 미세먼지 측정을 위해 개발한 이젝터-다공튜브 희석장치의 희석비 검증)

  • Shin, Dongho;Kim, Young-Hoon;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Lee, Ga-Young;Chun, Sung-Nam;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.15 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • The exhaust emissions from coal-fired power plants have received much attention because coal-fired power plants are the one of the largest sources of particulate matter (PM) emissions in South Korea. To measure the PM10 and PM2.5, we developed the novel diluter which is comprised of ejector and porous tube in series. The dilution ratio must be defined to calculate particle concentrations of the sampled air as well as to probe match for the isokinetic sampling. For this reason, we verified the dilution ratio of the developed diluter by the flow rate, numerical solution, gas concentration and particle concentration. The ejector-supplied flow rates were 10-50 L/min and the porous tube-supplied flow rates were 30, 50 L/min in this study. All methods above showed similar dilution ratios to each other within 10 % error rate. The dilution ratio was confirmed by comparing mass concentrations before and after the dilution process.

Experimental Study on Effect of Electrode Material and Thickness in a Dielectric Barrier Discharge Plasma Actuator Performance (전극 재료 및 두께가 DBD 플라즈마 액추에이터의 성능에 미치는 영향에 대한 실험적 연구)

  • Lee, Seung-Yeob;Shin, You-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.46-50
    • /
    • 2012
  • Plasma actuator makes parallel flow on the wall surface by the interaction between plasma and neutral air particles. Dielectric barrier discharge (DBD) plasma actuator is widely studied as one type of plasma actuators, which consists of one electrode exposed to the environmental gas and the other encapsulated by a dielectric material. This paper is experimentally focused on the performance of DBD plasma actuator mounted on a flat plate, which depends on kinds of the electrode materials, their thicknesses and the supplied voltage including its frequency. We measured the velocity magnitudes of the induced flow by a stagnation probe as a performance parameter of the plasma actuators. The velocity profiles of the flow induced by the plasma actuators are similar in all measurement cases. The magnitude of the induced velocity is strongly influenced by the thickness of the electrodes and the frequency of the input voltage. The performance of DBD plasma actuators is related to the electric properties of the electrode materials such as the ionization energy and the electrical resistivity.