• Title/Summary/Keyword: electric power forecasting

Search Result 144, Processing Time 0.035 seconds

Development of Load Control and Demand Forecasting System

  • Fujika, Yoshichika;Lee, Doo-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.104.1-104
    • /
    • 2001
  • This paper presents a technique to development load control and management system in order to limits a maximum load demand and saves electric energy consumption. The computer programming proper load forecasting algorithm associated with programmable logic control and digital power meter through inform of multidrop network RS 485 over the twisted pair, over all are contained in this system. The digital power meter can measure a load data such as V, I, pf, P, Q, kWh, kVarh, etc., to be collected in statistics data convey to data base system on microcomputer and then analyzed a moving linear regression of load to forecast load demand Eventually, the result by forecasting are used for compost of load management and shedding for demand monitoring, Cycling on/off load control, Timer control, and Direct control. In this case can effectively reduce the electric energy consumption cost for 10% ...

  • PDF

주상변압기 최대부하 추정을 위한 수용가 사용전력량 예측 (Working Electrical Energy Forecasting for Peak Load Estimation of Distribution Transformer)

  • 박창호;조성수;김재철;김두봉;윤상윤;이동준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.929-931
    • /
    • 1998
  • This paper describes the peak load forecasting technique of distribution transformers with correlation equation. While customers are demanding safe energy supply, conventional correlation equation that is used for load management of distribution transformers in domestic has some problems. To get accurate correlation equation, se-correlation equation were examined using new collected using the measuring instrument dev for this study. It was recognized that the qua equation was the most accurate for peak forecasting from working electrical energy.

  • PDF

CLUSTER ANALYSIS FOR REGION ELECTRIC LOAD FORECASTING SYSTEM

  • Park, Hong-Kyu;Kim, Young-Il;Park, Jin-Hyoung;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.591-593
    • /
    • 2007
  • This paper is to cluster the AMR (Automatic Meter Reading) data. The load survey system has been applied to record the power consumption of sampling the contract assortment in KEPRI AMR. The effect of the contract assortment change to the customer power consumption is determined by executing the clustering on the load survey results. We can supply the power to customer according to usage to the analysis cluster. The Korea a class of the electricity supply type is less than other country. Because of the Korea electricity markets exists one electricity provider. Need to further divide of electricity supply type for more efficient supply. We are found pattern that is different from supplied type to customer. Out experiment use the Clementine which data mining tools.

  • PDF

인공지능을 적용한 전력 시스템을 위한 보안 가이드라인 (Guideline on Security Measures and Implementation of Power System Utilizing AI Technology)

  • 최인지;장민해;최문석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.399-404
    • /
    • 2020
  • There are many attempts to apply AI technology to diagnose facilities or improve the work efficiency of the power industry. The emergence of new machine learning technologies, such as deep learning, is accelerating the digital transformation of the power sector. The problem is that traditional power systems face security risks when adopting state-of-the-art AI systems. This adoption has convergence characteristics and reveals new cybersecurity threats and vulnerabilities to the power system. This paper deals with the security measures and implementations of the power system using machine learning. Through building a commercial facility operations forecasting system using machine learning technology utilizing power big data, this paper identifies and addresses security vulnerabilities that must compensated to protect customer information and power system safety. Furthermore, it provides security guidelines by generalizing security measures to be considered when applying AI.

선택기반 다세대 확산모형을 이용한 전기자동차 수요예측 방법론 개발 (A Demand forecasting for Electric vehicles using Choice Based Multigeneration Diffusion Model)

  • 채아롬;김원규;김성현;김병종
    • 한국ITS학회 논문지
    • /
    • 제10권5호
    • /
    • pp.113-123
    • /
    • 2011
  • 최근 온난화 문제가 대두됨에 따라 세계 각국에서 $CO_2$ 배출감소를 위한 여러 가지 규제를 설정하고 있다. 특히 수송부분에서의 $CO_2$ 배출량 감소는 매우 영향력이 크므로 자동차 산업에서도 전기자동차를 비롯한 그린자동차 개발에 대한 관심이 높아지고 있다. 이에 따라 전기자동차 시대 도래 대비를 위하여 전기자동차 보급에 따른 인프라 구축 전략안 및 전력량 수요 예측이 필요하지만, 이의 기반이 되는 전기자동차 수요예측 방법은 소개되어 있지 않고 있다. 따라서 본 연구에서는 선택기반 다세대 확산모형을 이용하여 전기자동차의 수요를 예측하는 방법론을 제시하였다. 전기자동차와 비슷한 성격을 가지는 하이브리드 자동차의 과거 데이터를 이용하여 Bass 모형의 혁신계수와 모방계수를 추정하고 SP(Stated Preference)조사를 통하여 잠재적인 총수요를 추정함으로써 전기자동차의 수요를 년도별로 예측하였다. 또한, 전기자동차가 발전하는 속성 진화에 따른 다세대 확산과정을 모형에 반영하여 보다 정확한 수요예측이 가능하도록 하였다. 본 연구의 수요예측 방법론을 통하여 향후 전기자동차의 시장 점유율을 예측함으로써 전기자동차 보급과 밀접한 관련이 있는 전력수급 및 충전인프라 구축 연구에 활용 될 수 있도록 한다.

전력수요 변동률을 이용한 연휴에 대한 단기 전력수요예측 (Short-Term Electric Load Forecasting for the Consecutive Holidays Using the Power Demand Variation Rate)

  • 김시연;임종훈;박정도;송경빈
    • 조명전기설비학회논문지
    • /
    • 제27권6호
    • /
    • pp.17-22
    • /
    • 2013
  • Fuzzy linear regression method has been used for short-term load forecasting of the special day in the previous researches. However, considerable load forecasting errors would be occurring if a special day is located on Saturday or Monday. In this paper, a new load forecasting method for the consecutive holidays is proposed with the consideration of the power demand variation rate. In the proposed method, a exponential smoothing model reflecting temperature is used to short-term load forecasting for Sunday during the consecutive holidays and then the loads of the special day during the consecutive holidays is calculated using the hourly power demand variation rate between the previous similar consecutive holidays. The proposed method is tested with 10 cases of the consecutive holidays from 2009 to 2012. Test results show that the average accuracy of the proposed method is improved about 2.96% by comparison with the fuzzy linear regression method.

지식기반을 이용한 특수일의 수요예측 (Load Forecasting for Special Days Using Knowledge Base)

  • 조승우;황갑주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.698-700
    • /
    • 1996
  • A knowledge based forecasting system for special days has been developed for the economic and secure operation of electric power system. If-then production rules has been adopted in this system to be used in various environmental conditions. Graphic user interfaces enables a user to access easily to the system. The simulation based on the historical data have shown that the forecasting result was improved remarkably when compared to the results from the conventional statistical methods. The forecasting results can be used for power system operational planning to improve security and economy of the power system.

  • PDF

신경망과 퍼지시스템을 이용한 일별 최대전력부하 예측 (Daily Peak Electric Load Forecasting Using Neural Network and Fuzzy System)

  • 방영근;김재현;이철희
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.96-102
    • /
    • 2018
  • For efficient operating strategy of electric power system, forecasting of daily peak electric load is an important but difficult problem. Therefore a daily peak electric load forecasting system using a neural network and fuzzy system is presented in this paper. First, original peak load data is interpolated in order to overcome the shortage of data for effective prediction. Next, the prediction of peak load using these interpolated data as input is performed in parallel by a neural network predictor and a fuzzy predictor. The neural network predictor shows better performance at drastic change of peak load, while the fuzzy predictor yields better prediction results in gradual changes. Finally, the superior one of two predictors is selected by the rules based on rough sets at every prediction time. To verify the effectiveness of the proposed method, the computer simulation is performed on peak load data in 2015 provided by KPX.

퍼지 회귀분석법을 이용한 경쟁 전력시장에서의 현물가격 예측 (The System Marginal Price Forecasting in the Power Market Using a Fuzzy Regression Method)

  • 송경빈
    • 조명전기설비학회논문지
    • /
    • 제17권6호
    • /
    • pp.54-59
    • /
    • 2003
  • 본 논문에서는 퍼지 선형회귀분석법을 이용한 경쟁 전력시장에서의 전력의 시간별 현물가격을 예측하는 기법을 제시한다. 제안한 기법은 2002년 봄의 일주일에 대한 시간별 수요을 예측하여 본 기법의 타당성과 정확도를 검증하였다. 제안한 방법의 예측 오차는 주중의 경우 3.14%∼6.10%이며, 주말의 경우 7.04%∼8.22%로써 뉴럴 네트워크 기법을 이용한 방법과 비교하여 타당한 결과를 보였다.

Exponential Smoothing기법을 이용한 전기자동차 전력 수요량 예측에 관한 연구 (A Study on the Prediction of Power Demand for Electric Vehicles Using Exponential Smoothing Techniques)

  • 이병현;정세진;김병식
    • 한국방재안전학회논문집
    • /
    • 제14권2호
    • /
    • pp.35-42
    • /
    • 2021
  • 본 논문은 전기자동차 충전시설 확충계획에 중요한 요소인 전기자동차 전력 수요량 예측정보를 생산하기 위하여 Exponential Smoothing를 이용하여 전력 수요량 예측 모형을 제안하였다. 모형의 입력자료 구축을 위하여 종속변수로 월별 시군구 전력수요량을 독립변수로 월별 시군구 충전소 보급대수, 월별 시군구 전기자동차 충전소 충전 횟수, 월별 전기자동차 등록대수 자료를 월 단위로 수집하고 수집된 7년간 자료 중 4년간 자료를 학습기간으로 3년간 자료를 검증 기간으로 적용하였다. 전기자동차 전력 수요량 예측 모형의 정확성을 검증하기위하여 통계적 방법인 Exponential Smoothing(ETS), ARIMA모형의 결과와 비교한 결과 ETS, ARIMA 각각의 오차율은 12%, 21%로 본 논문에서 제시한 ETS가 9% 더 정확하게 분석되었으며, 전기자동차 전력 수요량 예측 모형으로써 적합함을 확인하였다. 향후 이 모형을 이용한 전기자동차 충전소 설치 계획부터 운영관리 측면에서 활용될 것으로 기대한다.