• Title/Summary/Keyword: electric power cooperation

Search Result 223, Processing Time 0.025 seconds

Study on the Operational Cost and Characteristics of a Hybrid Cooling Plant with a Ground Source Heat Pump (지열 열펌프가 적용된 복합냉방설비의 연계운전 특성 및 운전비용 분석)

  • Jeon, Jong-Ug;Jung, Hae-Won;Lee, Tae-Won;Kim, Yong-Ki;Hong, Dae-Hie;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.42-47
    • /
    • 2008
  • This paper reports the system performance of a hybrid plant, which combines a renewable energy plant of GSHP(Ground Source Heat Pump) with a conventional plant (screw water chiller). To find out operational cost and operating characteristics, the performance of the hybrid system was measured in a building located in Jeju island. Based on the measured data, the operating characteristics were analyzed and the operational cost was estimated by using payment table, which was provided by the Korea Electric Power Cooperation. Operating methods to save energy were recommended.

  • PDF

Discussion on Establishing UAM Operating Concept from the Pilot's Perspective (조종사 관점에서 UAM 운영개념 수립에 대한 고찰)

  • Hi-seok Yoon;Keun-young Lee;Kyu-wang Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Aviation industry is moving towards the third innovative era of AAM with electric power and AI after the JET-powered era following the Wright brothers' first flights. Research on UAM, eVTOL development, certification, and operations is competitively progressing, primarily in aviation-leading countries, aiming to resolve urban traffic saturation and foster the future aviation industries. This study introduces the concept of the pilot's role transition in operational safety as AI autonomous flight advances, comparing K-UAM operational concept with research from FAA, NASA, and EASA. It is to identify and propose solutions for challenges from the pilot's perspective in developing UAM and its safe operation system. To succeed in Advanced Air Mobility National Project, we suggest the collaboration among industry, academia, and institutions, along with the cooperation between civilians, governments, military, and the need for Urban Air Mobility integrated policies.

The Trend Analysis of Propulsion System for Railway Vehicle Using Patent Analysis (특허분석을 통한 철도차량용 추진제어장치 기술 분석)

  • Han, Young-Jae;Lee, Su-Gil;Park, Chan-Kyoung;Kim, Young-Guk;Bae, Chang-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.131-138
    • /
    • 2018
  • In this study, we investigated the trend of technological development in major countries related to the propulsion equipment of railway vehicles. The propulsion system is the main equipment of electric vehicles. A lot of time and investment are required in order to ensure the development of technology. Therefore, developed countries have maximized their effort to develop technologies with safety, reliability, and convenience of maintenance. They have also done their utmost to prevent technology transfer to other countries after the development of new technologies. For example, Toshiba of Japan developed a new 3,300V/1,500 A class IGBT power device, but was reluctant to export it to foreign countries in order to protect this technology. In this study, we analyzed the patents applied for related to propulsion control systems and presented the direction of development during the technical development of these systems. The patent analysis of the core technologies was conducted using the Thomson Innovation DB. We examined the number of patents applied for by country, year and major applicant. As a result of the analysis, it was found that the proportion of patent applications per country was in the order of China, 48%, Europe 16.6%, and the United States 14.9%. The patent situation of the top 10 principal applicants revealed that (the top three were?) ABB 14%, GE 13%, and CRRC 12%. At the same time, we also conducted a qualitative analysis of the level of technical development by evaluating such factors as the influence index, quotation, market securing power and citation. Based on the result of the patent analysis, we presented the direction of technical development of the propulsion control equipment of railway vehicles. Based on the analysis results, it was found that domestic applicants considerably reduced their efforts to protect their patents from foreign companies. Nowadays, most of the electric motors used in Korea are induction motors. In advanced countries, permanent magnet electric motors are employed in new railway lines. Therefore, intensive investment is needed in new developments.

The Benefit-Cost analysis for Korea Lithium-ion Battery Waste Recycling project and promotion plans (국내 중대형 이차전지 재활용 사업의 경제성 분석 및 발전방안 연구)

  • Mo, Jung-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.326-332
    • /
    • 2018
  • Korea faces major changes in energy policy, which include eco-friendly and zero-nuclear power. On the other hand, there are very few policies for the waste-management of mid- to large-sized lithium-ion batteries, such as electric car batteries and energy storage systems, which are expected to increase explosively due to such energy policy changes. Therefore, this study estimated the amount of mid- to large-sized lithium ion batteries waste and performed economics analysis of a middle and large sized secondary battery recycling project. Based on the results, a policy alternative for the revitalization of the related lithium-ion battery recycling industry is suggested. As a result, the B / C ratio of a domestic mid - to large - sized lithium ion battery recycling project is 1.06, in which the benefit is higher than the cost, so the business is economic feasible. Although the recycling project's economic efficiency is high, the recycling industry has not been activated in Korea because the domestic demand for rechargeable batteries recycling is very low. To solve this problem, this study proposes a plan to activate the industry by adding lithium secondary batteries to the EPR (Extended Producer Responsibility) items.

Development of Low-Cost, Double-Speed, High-Precision Operation Control System for Range Extender Engine (레인지 익스텐더 전기자동차 엔진용 저가형 2단속도 고정밀 운전제어시스템 개발)

  • Ham, Yun-Young;Lee, Jeong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.529-535
    • /
    • 2018
  • The range extender vehicle runs on a mechanism that allows the small power generation engine to start in the most efficient specific operating range to charge the battery and extend the mileage. In this study, we developed a step motor type intake air supply system that replaces existing throttle body system to develop a simple low cost control logic system. The system was applied to the existing base engine, and in order to improve the performance by increasing the amount of intake air, the effect of changing the length of the intake and exhaust manifold was experimentally examined. As a result, the Type B intake air control actuator operated by one step motor showed higher performance than the Type A in all the operation region, but the performance was lower than that of the base engine due to the increase of flow resistance. To improve this, it was confirmed that the engine performance was improved at both speeds of 2200rpm and 4300rpm when the 140mm adapter was installed in the intake manifold and when the newly designed 70mm exhaust manifold was applied. Through this process, high - precision operation control was realized by connecting the generator load to the optimized engine for the range extender electric vehicle. Experimental results showed that the speed change rate was within ${\pm}2.5%$ at 2200rpm in 1st stage and 4300rpm in 2nd stage and the speed follow-up result of 610 rpm/s was obtained when the speed was increased from 2200rpm to 4300rpm.

Security Analysis of KS X 4600-1 / ISO IEC 12139-1 (원격 검첨용 PLC 기술(KS X 4600-1 / ISO IEC 12139-1) 보안성 분석)

  • Hong, Jeong-Dae;Cheon, Jung-Hee;Ju, Seong-Ho;Choi, Moon-Suk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.1
    • /
    • pp.65-75
    • /
    • 2011
  • Power Line Communication (PLC) is a system for carrying data on a conductor used for electric power transmission. Recently, PLC has received much attention due to connection efficiency and possibility of extension. It can be used for not only alternative communication, in which communication line is not sufficient, but also for communication between home appliances. Korea Electronic Power Cooperation (KEPCO) is constructing the system, which automatically collects values of power consumption of every household. Due to the randomness and complicated physical characteristics of PLC protocol (KS X4600-1), it has been believed that the current PLC is secure in the sense that it is hard that an attacker guesses or modifies the value of power consumption. However, we show that the randomness of the protocol is closely related to state of the communication line and thus anyone can easily guess the randomness by checking the state of the communication line. In order to analyze the security of PLC, we study the protocol in detail and show some vulnerability. In addition, we suggest that PLC needs more secure protocol on higher layers. We expect that the study of PLC help in designing more secure protocol as well.

SysML-Based System Modeling for Design of BIPV Electric Power Generation (건물일체형 태양광 시스템의 전력발전부 설계를 위한 SysML기반 시스템 모델링)

  • Lee, Seung-Joon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.578-589
    • /
    • 2018
  • Building Integrated Photovoltaic (BIPV) system is a typical integrated system that simultaneously performs both building function and solar power generation function. To maximize its potential advantage, however, the solar photovoltaic power generation function must be integrated from the early conceptual design stage, and maximum power generation must be designed. To cope with such requirements, preliminary research on BIPV design process based on architectural design model and computer simulation results for improving solar power generation performance have been published. However, the requirements of the BIPV system have not been clearly identified and systematically reflected in the subsequent design. Moreover, no model has verified the power generation design. To solve these problems, we systematically model the requirements of BIPV system and study power generation design based on the system requirements model. Through the study, we consistently use the standard system modeling language, SysML. Specifically, stakeholder requirements were first identified from stakeholders and related BIPV standards. Then, based on the domain model, the design requirements of the BIPV system were derived at the system level, and the functional and physical architectures of the target system were created based on the system requirements. Finally, the power generation performance of the BIPV system was evaluated through a simulated SysML model (Parametric diagram). If the SysML system model developed herein can be reinforced by reflecting the conditions resulting from building design, it will open an opportunity to study and optimize the power generation in the BIPV system in an integrated fashion.

Single-phase Control Algorithm of 4-Leg type PCS for Micro-grid System (마이크로그리드용 4-Leg 방식 PCS의 각상 개별제어 알고리즘에 관한 연구)

  • Kim, Seung-Ho;Choi, Sung-Sik;Kim, Seung-Jong;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.817-825
    • /
    • 2017
  • The AC-common bus microgrid system can overcome several weaknesses of the DC microgrid system by interconnecting the DC/AC inverters used for renewable energy with an AC network. Nevertheless, the unbalanced loads inherent in the electric power systems of island and small communities can deteriorate the performance of the AC microgrid system. This is because of the limited voltage regulation capability and mixed power flow in the voltage source inverter. In order to overcome the unbalanced load condition, this paper proposes a voltage and current control algorithm for the 4-leg inverter based on the single phase d-q control method, as well as the modeling of the voltage controller using Matlab/Simulink S/W. From the S/W simulation and experiment of the 250KW proto-type inverter, it is confirmed that the proposed algorithm is a useful tool for the design and operation of the AC microgrid system.

A Study on The Performance Verification and Economic Evaluation of ESS for Frequency Regulation Application (주파수조정용 ESS의 성능검증 및 경제성평가 알고리즘에 관한 연구)

  • Lee, Ju-Gang;Choi, Sung-Sik;Kang, Min-Kwan;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.738-744
    • /
    • 2017
  • Recently, the installation of energy storage systems (ESSs) has increased in parallel with the extension of renewable energy resources. However, there has been no concrete analysis ofthe performance verification and economic evaluation of ESSs,which makes it difficult to perform aneffective installation and operation of an ESS. In particular, there are no international technical standards and guidelines on electric ESS for frequency regulation applications. Therefore, acomprehensive study on the power quality, impact on grid, extent of contribution, and cost benefit study of ESS are strongly being required. Under these backgrounds, this paper proposes a performance verification algorithm on ESS for frequency regulation application based on ananalysis of the AGC(Automatic Generation Control) performance verification method of PJM in USA. In addition,this paper proposes an economic evaluation algorithm on a 500 MW installation of ESS for frequency regulation applications using the account settlement of an expensive gas-fired generation plant and coal-fired power generation plant. From the simulation with real ESS operation data and 500 MW installation case, it wasconfirmed that the ESS showssuperior performance toany other conventional generators and provides anannual benefit of 500 MW ESS are between 345~429 billon won.

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train (고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.237-246
    • /
    • 2019
  • The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.