• Title/Summary/Keyword: electric field measurement

Search Result 452, Processing Time 0.025 seconds

A Study on the Harmonics Measurement, Assessment and Simulation of the High Speed Electric Train Loads (고속철 부하의 고조파 측정, 평가 및 시뮬레이션에 관한 연구)

  • Kim, Kyung-Chul;Jin, Seong-Eun;Lee, Joo-Hong;Lee, Il-Moo;Kim, Joo-Rak
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.272-277
    • /
    • 2006
  • High speed electric trains have nonlinear loads including converters and inverters for the contol synchronous motors. Harmonic field measurements have shown that the harmonic contents of a waveform varies with time. Direct application of the harmonic assessment to the snapshot measurements would result in ambiguous conclusions depending on which instant is sampled. A cumulative probablistic approach is the most commonly used method to solve time varying harmonics. This paper provides an in depth analysis on harmonics field measurement of the high speed electric train loads, harmonics assessment by the international harmonic standards IEC 61000-3-6 and IEEE std. 519-1992, and harmonics simulation using EDSA program for the case study.

  • PDF

A Study on the Analysis of the Magnetic Fields Generated by the operation of Electric Appliances (전기기구의 운전중에 발생되는 자계성분해석에 관한 연구)

  • Lee, Bok-Hee;Park, Hyung-Ki;Chung, Seung-Soo;Paek, Yong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.575-577
    • /
    • 1993
  • In this study, the reponse characteristic of the time-changing magnetic field measurement system by using the self-integrated magnetic sensor is investigated. The measurement system has the frequency bandwidth of 40[Hz]-50[kHz]. The time-changing magnetic fields generated by the operations of small-size electric machines are investigated. The magnetic field generated by the starting and/or the operation of electric appliances mainly includes the odd harmonics such as the third, the fifth, the seventh, and so on.

  • PDF

Effective Volume of the Korea Research Institute of Standards and Science Free Air Chamber L1 for Low-Energy X-Ray Measurement

  • Chul-Young Yi;Yun Ho Kim;Don Yeong Jeong
    • Progress in Medical Physics
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose: To evaluate the effective volume of the Korea Research Institute of Standards and Science free air chamber (KRISS FAC) L1 used for the primary standard device of the low-energy X-ray air kerma. Methods: The mechanical dimensions were measured using a 3-dimensional coordinate measuring machine (3-d CMM, Model UMM 500, Carl Zeiss). The diameter of the diaphragm was measured by a ring gauge calibrator (Model KRISS-DM1, KRISS). The elongation of the collector length due to electric field distortion was determined from the capacitance measurement of the KRISS FAC considering the result of the finite element method (FEM) analysis using the code QuickField v6.4. Results: The measured length of the collector was 15.8003±0.0014 mm with a 68% confidence level (k=1). The aperture diameter of the diaphragm was 10.0021±0.0002 mm (k=1). The mechanical measurement volume of the KRISS FAC L1 was 1.2415±0.0006 cm3 (k=1). The elongated length of the collector due to the electric field distortion was 0.170±0.021 mm. Considering the elongated length, the effective measurement volume of the KRISS FAC L1 was 1.2548±0.0019 cm3(k=1). Conclusions: The effective volume of the KRISS FAC L1 was determined from the mechanically measured value by adding the elongated volume due to the electric field distortion in the FAC. The effective volume will replace the existing mechanically determined volume in establishing and maintaining the primary standard of the low-energy X-ray.

A Study on the Space Charge Polarity Measurement Teasurement Technology of Cross-Linked Polyethylene for Power Cable (전력케이블용 가교폴리에틸렌의 공간전하 극성측정기술에 관한 연구)

  • 국상훈;서장수;김병인;박중순
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.6
    • /
    • pp.23-31
    • /
    • 1992
  • Charged particle in the polymers is supposed to affect the electrical conduction and to lead them th dielectrical breakdown finally. So we measured the space charge distribution made by application of high electric field and evaluated the polarity of the charged particle affected on electrical conduction and space charge formed in the insulating materials by using temperature gradient thermally stimulated current measurement method(TG-TSC measurement). As a result, in the cross-linked polyethylene, A-peak was caused from dipole polarization, C-peak was caused from ionic space charge polarization and D-peak was injected trap hole. Also we found it crossible the evaluated the polarity of injected trap carrier and electron(or hole) of carrier trap in the cross-lined polyethylene. We found that ${\gamma}$-ray irradiated low density polyethylene had a relation to the electronic trap and we also could get the value of electric field distribution in the samples of which evaluation was available.

  • PDF

Planar-type Sensor for Measuring the Time-varying Electric Fields (시변전장 측정용 평판형 센서)

  • Lee, Bok-Hee;Kil, Gyung-Suk
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.15-20
    • /
    • 1995
  • This paper deals with the planar-type sensor which can measure the time-varying electric fields. To make an electric field measurement system having a wide bandwidth, a planar-type sensor is proposed. The theoretical principle and design rule of the measuring device are introduced, and also the calibration and application investigations are carried out. From the calibration experiments, the frequency bandwidth of the electric field measurement device ranges from 160 [Hz] to 25 [MHz] and the sensitivity of the sensor is 1.2 [mV/V/m]. As the application experiments, the electric fields caused by the impulse and oscillating transient voltage in high voltage laboratory are measured by the proposed device, and the results are excellent.

  • PDF

Assessment of Magnetic Field Mitigation and Electrical Environmental Effects for Commercially Operating 154kV Transmission Lines with Passive Loop

  • Lee, Byeong-Yoon;Myung, Sung-Ho;Ju, Mun-No;Cho, Yeun-Gyu;Lee, Dong-Il;Lim, Yun-Seog;Kim, Sang-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.991-996
    • /
    • 2014
  • Power frequency magnetic field is still a critical problem for new construction of overhead power transmission lines in Korea because most people have been concerned about possibly carcinogenic effects of it. Although reference level of power frequency(60Hz) magnetic field has been set to 200uT in ICNIRP guidelines published in 2010, Korean government has no intention of adjusting 83.3uT specified by law in 2006 to this new reference level in consideration of people's concerns for the time being. Regardless of the current regulated magnetic field value, electric utility company has been trying to reduce magnetic field in the residential area in the vicinity of overhead power transmission lines to take into account of public concerns on the long-term effect of magnetic fields. In an effort to reduce magnetic field, engineering side has made considerable efforts to develop passive loop based, cost-effective mitigation technique of power frequency magnetic field more than ten years. In order to verify developed power frequency magnetic field mitigation technique based on passive loop, a horizontal type of passive loop was designed and installed for commercially operating 154kV overhead power transmission line for the first time in Korea. The measurement results before and after the installation of passive loop showed that magnetic field could be reduced to about 20%. The electrical environmental effects such as AN, RI and TVI were assessed before and after the installation of passive loop and these values were complied with the requirements specified by electric utility. It has been confirmed from the field test results that passive loop could be commercially and cost-effectively utilized to mitigate power frequency magnetic field.

A Study on the Measurement Technique of the Grounding Mesh Resistance by Field Measurements (현장실측에 의한 메시(Mesh)접지저항 출정기법 연구)

  • 한기붕;김삼수;정세중;이상익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.426-429
    • /
    • 1999
  • In this paper, we have provided the measurement technique of the grounding mesh resistance by field measurements. The standard of measurement is specified in the IEEE Std 81.2-1991 and JEAC 5001-1988, which is the the fall-of-potential method by test-current injection, but this method is difficult to apply at field, where is small around a electric power substation of domestic. For the convenient measurement method, space of assistant probe and quantity of test-current injection are changed step for step. As the result, ' the proposed measurement technique of grounding mesh resistance is that the space of current and potential probes must be fixed at 150rn from a grounding mesh, the test-current injection has to keep 5A or more.

  • PDF

Calculation of Radiative Electric Field Intensity of Overhead Medium-Voltage Power lines for Power Line Communication (전력선통신을 위한 고압 배전선로의 방사전계강도 계산)

  • Chun Dong-wan;Park Young-jin;Kim Kwan-ho;Shin Chull-chai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1136-1146
    • /
    • 2005
  • In this paper, the radiative electric field intensity due to the communication signal and conductive noise is calculated in overhead medium voltage power lines for power line communication. The input impedance is calculated by means of 2 port equivalent model of medium voltage power line network and basic transmission line theory. And then, currents is calculated by calculated input impedance and finally, the emissive electric field is calculated. The input impedance appears like a standing wave form with a fixed cycle because high reflection at the input terminal due to the characteristic impedance of medium voltage power line is very large. A calculated current and radiative electric field also appears like this form. From the measurement results, the measured results are very similar to the calculated results.

Improvements to the stability of electric field sensors

  • Lee, Dong-Oh;Robert Boston;Dietrich W. Langer;Joel Falk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.495-496
    • /
    • 1998
  • The measurement of the amplitude and phase of electric fields on high voltage transmission lines is important for several reasons including a) Metering and determination of power flow, b) protective relaying. and c) fault sensing. The work reported here is directed toward a major improvement to optically based, electric-field sensors. This is a signal processing based technique for overcoming the instabilities of conventional, optically-based, electric-field sensors to changes in optical power or temperature.

  • PDF

Design and Fabrication of a Field Mill for Ground-Level Electric Field Measurement (대지전계 측정을 위한 필드밀의 설계 및 제작)

  • Kil, Gyung-Suk;Song, Jae-Yong;Kim, Il-Kwon;Kwon, Jang-Woo;Ahn, Chang-Hwan;Lee, Young-Keun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.52-59
    • /
    • 2007
  • A field mill capable of measuring the magnitude and polarity of electric fields at the ground level was studied to apply to a lightning warning system as a sensor. We designed and fabricated a planar-shutter type field mill with a rotating-vanes. A calibration of the field mill was performed in a vertically symmetrical arrangement which consists of two equal size parallel round plates to form a homogeneous electrical fields. The sensitivity of the field mill was adjusted at 0.5[V/kV/m], and this covers a ranges from 200[V/m] to 20[kV/m]. After the calibration experiment, the field mill was installed on the roof of a building to measure the changes of electric field intensity caused by thunderclouds. During the period from July 1. 2006 to July 15. 2006, the electric field intensity was recorded a ranges of $+2[kV/m]{\sim}-6[kV/m]$ depending on generation, extinction and movement of thunderclouds. From the actual test on the ground it is confirmed that the field mill has a good performance necessary for the measurement of DC electric fields.