• Title/Summary/Keyword: electric field effects

Search Result 513, Processing Time 0.025 seconds

Effects of 60-Hz Time-Varying Electric Fields on DNA Damage and Cell Viability Support Negligible Genotoxicity of the Electric Fields

  • Yoon, Yeo Jun;Li, Gen;Kim, Gyoo Cheon;Lee, Hae June;Song, Kiwon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.134-141
    • /
    • 2015
  • The effect of a 60 Hz time-varying electric field was studied using a facing-electrode device (FED) and a coplanar-electrode device (CED) for further investigation of the genotoxicity of 60 Hz time-varying magnetic field (MF) from preceding research. Neither a single 30-minute exposure to the CED or to the FED had any obvious biological effects such as DNA double strand break (DSB) and apoptosis in cancerous SCC25, and HeLa cells, normal primary fibroblast IMR90 cells, while exposures of 60 Hz time-varying MF led to DNA damage with induced electric fields much smaller than those used in this experiment. Nor did repetitive exposures of three days or a continuous exposure of up to 144 hours with the CED induce any DNA damage or apoptosis in either HeLa or IMR90 cells. These results imply that the solitary electric field produced by time-varying MF is not a major cause of DSBs or apoptosis in cancer or normal cells.

A Study On the Effects of Velocity Staur Velocity Saturation on the Mosfet Devices (CARRIER속도 포화가 MOSFET소자특성에 미치는 영향에 관한 연구)

  • Park, Young-June
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.424-429
    • /
    • 1987
  • It has been observed that the reduction rate of the inversion layer carrier mobility due to the increase of the longitudinal electric field(drain to source direction) decreases as the transverse electric field increases. The effects of this physicar phenomenon to the I-V characteristics of the short channel NMOSFET are studied. It is shown that these effects increase the drain Current in the saturatio region, which agrees with the genarally observed decrepancy between the experimental I-V charateristics and the I-V modeling which dose not include this physical phenomenon. Also it is shown that this effect becomes more important when the device channel length decreases and the device operates in the high electric field range.

  • PDF

Output Voltage Characteristics of HVDC Electric Field Mill Sensor for Different Speed Variables of Rotating Electrode

  • Kim, Young Sun;Park, Jae Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2001-2006
    • /
    • 2017
  • This paper explains the effects of the weak signal of a rotating-type electric field mill sensor fabricated for measuring the intensity of the electric field generated by high-voltage direct current (HVDC) power transmission lines. The fabricated field mill consists of two isolated electrode vanes, a motor driver, and a ground part. The sensor plate is exposed to and shielded from the electric field by means of a rotary shutter consisting of a motor-driven mechanically complementary rotor/stator pair. When the uncharged sensor plate is exposed to an electric field, it becomes charged. The rotating electrode consists of several conductive vanes and is connected to the ground part, so that it is shielded. Determining the appropriate design variables such as the speed of the vane, its shape, and the distance between the two electrodes, is essential for ensuring optimal performance. By varying the speed, the weak signal characteristics which is used to signal processing and calibration experiment are quite different. Each weak signal pattern was analyzed along with the output voltage characteristics, in order to be able to determine the intensity of the electric field generated by HVDC power transmission lines with accuracy.

A Study on the Safety of Electromagnetic Wave of Medical Imaging System (의료영상장치의 전자파 안전에 대한 연구)

  • Seon, Jong-Ryul;Lee, Won-Jeong;Rhim, Jae-Dong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.103-112
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system ($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

  • PDF

A Study on the Safety of Electromagnetic Wave of Medical Imaging System (의료영상장치의 전자파 안전에 대한 연구)

  • Seon, Jong-Ryul;Lee, Won-Jeong;Rhim, Jae-Dong
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.67-72
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic(USG) system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic(R/F) system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

Effects of Electric Current Stimuli and High-Voltage Electric Field Treatments on Brown Rice Germination (전류자극 및 전기장 처리가 현미 발아에 미치는 영향)

  • Lim, Ki-Taek;Kim, Jang-Ho;SeonWoo, Hoon;Hong, Ji-Hyang;Chung, Jong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.100-107
    • /
    • 2010
  • This study was conducted to investigate the effects of electric current stimuli and high-voltage electric field treatments on brown rice germination. The brown rice stimulated by electrical current stimuli, functional electrical stimuli of a pulse type, and high-voltage electric field treatments were observed (Type I, II and III). Treatment Type I was a method of semi-soaking brown rice with electric current stimuli of 0.13 V/cm, 0.19 V/cm, and 0.25 V/cm into Petri-dishes for 72 hours. Type II was a method of semi-soaking brown rice with functional electrical stimuli of a pulse type(DC 1 V, 1 Hz, 5%, and duty cycles of 5%, 20%, and 35%) into Petri-dishes for 72 hours. Type III was a method of water-soaking with high-voltage electric field treatments for 60 hours. High-voltage electric field treatments at 15 kV/cm were also conducted for 2.5 min, 7.5 min, and 10 min, respectively. The germination rate and the sprout growth of brown rice germinated by electric current stimuli with 0.13 V/cm, 0.19 V/cm, and 0.25 V/cm were increased by about 10-15% compared with those of the control group. The germination rate and the sprout growth of brown rice germinated by functional electrical stimuli of pulse type(DC 1 V, 1 Hz, 5% duty cycle) were increased by about 10∼15% compared to those of the control group. Also, the best effective treatment among high-voltage electric field treatments was the 10 min group at 15 kV/cm. The germination rate and the sprout growth of brown rice germinated by this treatment of 10 min at 15 kV/cm were increased by about 10∼20% compared to those of the control group. The treatments of electric current stimuli and high-voltage electric field accelerated the germination rate and sprout growth of brown rice by about 10∼15% compared to those of the control group.

The Effects of Electric Field Variation by The Third Electrode on Water Electrophysicochemical Characteristics (제3전극에 의한 전계변화가 수중 전기물리화학적 특성에 미치는 영향)

  • Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.136-141
    • /
    • 2010
  • In this paper, after the third electrode type oxidant generator which could format non-uniform electric field in water had been manufactured and installed, by direct electrolysis, the effects of the hydrogen potential and oxidation reduction potential characteristics attendant upon electric field change on a higher concentration oxidant generation characteristics were investigated. Consequently, as the third electrode was installed in the middle of two slit electrodes and the polarity of applied power was changed, it was observed that the third electrode system with the positive electrode can generate a higher concentration oxidant, hydrogen potential and oxidation reduction potential as compared with that of the negative electrode. It is because the positive electrode was bombarded mostly energetic electrons and the negative electrode was bombarded mainly by less energetic positive ions.

Electric-Field-Induced Lattice Distortion and Related Properties in Relaxor Ferroelectrics (완화형 가유전체에서 전계인가에 따른 격자왜곡과 강유전물성의 상관관계)

  • 박재환;박재관;김윤호
    • Korean Journal of Crystallography
    • /
    • v.12 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • Effects of electric-field-induced lattice distortion on the polarization and strain were investigated in Pb(Mg/sub 1/3/Nb/sub 2/3)O₃ relaxor ferroelectric ceramics in the temperature range of -50℃∼90℃. The ratio of residual strain and polarization (S/sub r//P/sub r/ rarely depends on the temperature. However, the ratio of the electric field included strain and polarization (S/sub induced//P/sub induced/) increased as the temperature decreases below phase transition temperature. To explain these experimental results, a simple rigid ion model concentrating on only Bo/sub 6/ octahedron was suggested.

  • PDF

Electric Field Strength and Compressive Stress Effects on the Displacement of Multilayered Ceramic Actuators (적층형 세라믹 압전 액추에이터의 전계강도와 압축응력에 따른 변위특성 해석)

  • Song, Jae-Sung;Jeong, Soon-Jong;Kim, In-Sung;Min, Bok-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.248-252
    • /
    • 2005
  • The effects of electric field strength and mechanical compressive stress on the displacement of multilayered ceramic actuator, stacked alternatively 0.2 (PbM $n_{1}$3/N $b_{2}$3/ $O_3$)-0.8(PbZ $r_{0.475}$ $Ti_{0.525}$ $O_3$) ceramic thin films and 70Ag-30Pd electrodes were investigated. Because the actuators were designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. so the polarization and strain were affected by the amount of 180$^{\circ}$domain, electric field strength and mechanical compressive stress. Consequently, the change of polarization, displacement with respect to field strength, and mechanical compressive stress were likely to be caused by readiness of the domain wall movement around the ceramic-electrode interfaces.ces.

Temperature-Viscosity Characteristics of Hydrous and Anhydrous Electro-Rheological Fluids (함수계와 비수계 ER유체의 온도-점도 특성)

  • 이진우;장성철;염만오;김도태;박재범
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.451-456
    • /
    • 2002
  • This paper describes the properties of Temperature-Viscosity characteristics of hydrous and anhydrous ER fluids containing starch and titanium particle in silicone oil. ER effects arise from electrostatic forces between the starch particles and titanium particles dispersed in the electrically insulating silicone oil induced when electric field is applied. ER fluids under electric field have been found to provide resonable estimates of ER fluid viscosity variation characteristics. Yield shear stress of the ER fluids were measured on the couette cell type rheometer as a function of electric fields. The outer cup is connected to positive electrode(+) and bob becomes ground(-). The electric field is applied by high voltage DC power supply. In this experiment shear rates were increased from 0 to 200/equation omitted/ in 2 minutes.

  • PDF