• Title/Summary/Keyword: electric detonation

Search Result 7, Processing Time 0.018 seconds

Study on comparison with electronic detonation blasting and non-electric detonation blasting (터널굴착 시 전자뇌관과 비전기뇌관 발파에 관한 비교 연구)

  • Yoon, Ji-Sun;Lim, Su-Hwan;Lee, Jin-Moo;Bae, Sang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.185-191
    • /
    • 2008
  • Today, Large and bigger underground construction are increased. In this study, Blating used electronic detonation (OBM Method) and non-electric detonation are carried out. Through comparison with two method, reduction of vibration and noise and efficiency of construction are investigated. As a result of this study, using electronic detonation is shown that it can control lower vibration and noise level, and better HCF, mucfile, advance rate and fragmentation.

  • PDF

The Investigation of Detonation Characteristics of Ethylene Oxide Mixture by Using Incident Shock Tube Technique (입사 충격파관을 이용한 에틸렌 옥사이드 혼합물의 데토네이션 특성연구)

  • Moon, J.H.;Chung, J.D.;Kang, J.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.121-134
    • /
    • 1994
  • Shock tube investigation of ethylene oxide-$0_{2}-N_{2}$ mixture have been performed to reveal detonation characteristics of the mixture in terms of detonation pressure and speed. Theoretical calculation of thermodynamic parameters at the Chapmann-Jouguet detonation of the mixture has been also performed. A comparision of the observed results with the calculated ones can lead us to predict the detonation parameters of ethylene oxide in an artificial air. In addition, we have observed ignition delay times of ethylene oxide mixtures. The best fit of the observed delay times to Arrhenius gas kinetic relation gives : ${\tau}=10^{-144}{e{xp}}(E_a/RT)[C_{2}H_{4}O]^{-4.8}[O_{2}]^{-12.4}[N_{2}]^{-14.1}$ $E_a=3.67kcal/mole$ The observed activation energy is markedly reduced, compared with the case of ethylene oxide diluted in Ar. It could be due to the factor that $N_2$ play a role as detonation promoter yielding very reactive NOx radicals.

  • PDF

On the improvement for blasting technology (A history of the explosives engineers society of Korea) (폭파 기술의 발전 (우리 학회의 발자취))

  • Huh, Ginn
    • Explosives and Blasting
    • /
    • v.14 no.4
    • /
    • pp.4-12
    • /
    • 1996
  • In '50, It was turnning point of tunneling technology that v-cut of single Face replaced by Burn cut.. Which was a standard Blasting formula. In '70, We faced Seoul Sub-Way construction by NATM. As it was damages to the Structure on the surface, finally we made empirical formula. For Granite $V=kw^{0.57}D^{1.75}$ For Grneiss $V=KW^{0.5}D^{1.75}$ For Concrete breaker $V=KW^{0.5}D^{1.75}$ (K=7) The magnitude of groun vibration can be reduced as using follow matters. First, by using explosive that have low dencity and low Velocity of detonation. Second adopting two stage deck charging, third, by using Milli Second electric Caps and Multi-Sequency blasting machine.

  • PDF

A Case Study on Explosive Demolition of Gunsan Steam Power Station in Republic of Korea (군산화력발전소 발파해체 실용화 시험시공 사례)

  • Min, Hyung-Dong;Song, Young-Suk;Kim, Hyo-Jin;Seo, Young-Soo
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.11-21
    • /
    • 2007
  • The main structure of Gunsan steam power station was demolished by the toppling method using high explosives. Height of a main building is 58m and a total floor area is $292,000m^2$. It is Rahmen(rigid-frame) structure consisted of almost columns and beams and slabs exist only in one part of the building for the electricity generators equipments. To improve the efficiency of blasting work, it is separated into 4 sectors. Blasting floors were 1, 2, 3, & 4 stories from first sector to third sector, while 1, 2, 5, & 7 of fourth sector were blasted because it had not slabs. About 102.675 kg of the MegaMITE were used with 225 electric detonator and 638 non-electric detonators to check detonator connection and confidence of detonation. The blasting noise and vibration were monitored to evaluate the environment effect and the damage of the nearby structures.

Blasting Standardization works for NATM on the Seoul Subway Construction by Dr, Ginn Huh (서울 지하철공사 발파공법의 표준화)

  • Heo, Jin
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.3
    • /
    • pp.5-23
    • /
    • 1983
  • On the Seoul Metropolitan Subway Construction of No. 3, 4 Line, the total length is 57 Km and it is now undergoing almost 55% progress. The working method is classified into Open Cut of 70% and the rest of 30% tunnelling method in the 48 job site. Above tunnelling method is execute by American Steel Support System and the rest of 10 job site carried out by New Austria Tunnelling Method. This paper describes Blasting Standardizations works on the above Tunnelling ' Open Cut Method under big slogan, first safety, second execution. As a superintendent, I strived standardization of works with Better powder, Better Drills ' Better Pattern. Geological structure of Seoul area is composed by Jurassic Granite and also the above rockgroup are over burden by Alluviums as a Unconformity. First of all, I carried out the standard amount of powder and burden through experimental standard blasting by each powder as following Blasting works in the subway construction is surrounding shop Building, under pass the city river and also under pass highest building basement floor. I made allowable Blasting Vibration Value by West-Germany Vornorm DIN 4150, Teil 3 and should measure each blasting works as fellows all of powder is used basically Low-Gravity and Low Velocity such as Slurry, Ammonium Nitrate ' Finex I, II. for Smooth Blasting Instead of Gelatin Dynamite. Electric Detonation Cap is used basically M/S Delay Cup instead of Electric delay ' Simultaneous cap. I applied following formula V=KW3/4 $D^{-2}$ V=Particle Velocity (Cm/sec) K=Ginh Huh's Value W=Delay Charge (Kg) D=Distance(m) In the Open Cut, within 1m distance from H-pile I made to use the Concrete breaker, as following V=7W/$^{0.5}$V/$^{-1.75}$ On the Concentrate Building area, I advise to use Light class drill ø36m Bit and advance 1.1m per round blasting the three boom jumbo drill over ø45mm used only suburb of city.e Light class drill ø36m Bit and advance 1.1m per round blasting the three boom jumbo drill over ø45mm used only suburb of city.

  • PDF

Dead Pressure and its measures of Emulsion Explosives at Small Sectional Tunnel (소단면 터널에서 에멀젼폭약의 사압현상과 대책)

  • Min, Hyung-Dong;Jeong, Min-Su;Jin, Yeon-Ho;Park, Yun-Suk
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • In general, the size of tunnel cross section in construction site is $50{\sim}200m^2$. But, electric cable tunnel, telecommunication cable tunnel, mine tunnel. Waterproof tunnel have small cross section less than $20m^2$. There are so many problem at small sectional tunnel: restriction of equipment, dead pressure by precompression, loss of efficiency, increase of work time. Especially, explosives remainder by precompression of previous detonation is serious problem. To find its measures of dead pressure (explosives remainder), the following series of progress have been conducted: (1) survey of previous study (2) investigate causes of dead pressure (3) set up of its measures (4) application and appraisal at tunnel site. The measures, change of cut pattern, hole space over 40cm, adjustment of delay time, are proved by experimental results.