• Title/Summary/Keyword: electric cut properties

Search Result 15, Processing Time 0.029 seconds

Functional and Physical Properties of Weft Knit with Silver Slit Yarn (은 슬릿사 위편성물의 물성 및 기능성)

  • Jeong, Sam-Ho;Park, Jong-Sik;Kwon, Young-Ah
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.756-761
    • /
    • 2008
  • In this paper, silver slit yarns combined with cotton yarns were used to produce weft knits. The purpose of this study was to investigate the physical properties as well as the functional properties of weft knit with silver slit yarns. The six different weft knit fabrics were made from silver slit yarns varying knit structure and fabric density. One cotton weft knit was also knitted to compare the properties. Weft knits made from silver slit yarns were characterized by excellent antibacterial properties, electric magnetic shielding properties, UV-cut properties, anti-static properties, and air permeability. Although there were significant differences in the physical properties of different knit structure and the fabric density, weft knits with silver slit yarns were seen to have better end use properties and ideal for apparel than the cotton weft knits.

Properties of composite insulators stuck by cement powder (고분자 애자의 시멘트 분진에 의한 특성 변화 연구)

  • Lee, Sang-Jin;Kim, Dong-Wook;Choi, Myung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1602-1604
    • /
    • 2000
  • When insulators are operated near cement factories, some amount of cement powder may be stuck on the surface of insulators and decreases their electrical performances. Three kinds of insulators, such as, silicone EPDM and porcelain insulators, are tested in this paper. Testing Voltage of 25kV is applied to the samples, and surface leakage current is measured for 6 months after cement solvent of 10 vol% was stuck on the surface of each insulator in the laboratory. Insulation layers are cut from 3 and 6 month-aged insulators and tested for ac breakdown, impulse breakdown, contact angle. After aging, electrical properties are unchanged in silicone and EPDM insulators but show some changes in porcelain insulators.

  • PDF

Principles and Comparative Studies of Various Power Measurement Methods for Lithium Secondary Batteries (리튬이차전지 출력측정법의 원리 및 측정법간 비교 연구)

  • Lee, Hye-Won;Lee, Yong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2012
  • As the market of lithium secondary batteries moves from mobile IT devices to large-format electric vehicles or energy storage systems, the strengthened battery specifications such as long-term reliability longer than 10 years, pack-level safety and tough competitive price have been required. Moreover, even though high power properties should also be achieved for hybrid electric vehicles, it is not easy to measure accurate power values at various conditions. Because it is difficult to choose a proper measurement method and its experimental condition is more complex comparing to capacity measurement. In addition, the power values are very sensitive to power duration time, state-of-charge (SOC) of cells, cut-off voltages, and temperatures, whereas capacity values are not. In this paper, we introduce three kinds of power measurement methods, hybrid pulse power characterization (HPPC) suggested by US FreedomCar, so-called J-pulse by Japan electric vehicle association standards (JEVS) and constant power measurement, respectively. Moreover, with pouch-type unit cells for HEV, experimental power data are discussed in order to compare each power measurement.

Magnetic Resonance and Electromagnetic Wave Absorption of Metamaterial Absorbers Composed of Split Cut Wires in THz Frequency Band (THz 대역에서 Cut Wire로 구성된 메타소재의 자기공진 및 전파흡수특성)

  • Ryu, Yo-Han;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.49-53
    • /
    • 2017
  • Metamaterials composed of split cut wire (SCW) on grounded polyimide film substrate have been investigated for the aim of electromagnetic wave absorbers operated in THz frequency band. Reflection loss and current density distributions are numerically simulated with variations of the SCW geometries using the commercial software. The minimum reflection loss lower than -20 dB has been identified at 5.5~6.5 THz. The simulated resonance frequency and reflection loss can be explained on the basis of the circuit theory of an inductance-capacitance (L-C) resonator. Dual-band absorption can be obtained by arrangement of two SCWs of different length on the top layer of the grounded substrate, which is due to multiple magnetic resonances by scaling of SCWs. With increasing the side spacing between SCWs, a more enhanced absorption peak is observed at the first resonance frequency that is shifted to a lower frequency.

A Study on Correlation Peel Strength and the Efficiency of Shingled Modules According to Curing Condition of Electrically Conductive Adhesives (슁글드 모듈에서 경화조건에 따른 ECA 접합강도와 효율의 상관관계에 관한 연구)

  • Jun, Dayeong;Son, Hyoungin;Moon, Jiyeon;Cho, Seonghyeon;Kim, Sung hyun
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.31-35
    • /
    • 2021
  • Shingled module shows high ratio active area per total area due to more efficient packing without inactive space between cells. The module is fabricated by connecting the pre-cut cells into the string using electrically conductive adhesives (ECA). ECAs are used for electric and structural connections to fabricate the shingled modules. In this work, we investigated a correlation between ECA peel strength and the efficiency of pre-cut 5 cells module which are fabricated according to ECA interconnection conditions. The curing conditions are varied to determine whether ECA interconnection properties can affect module properties. As a result of the peel test, the highest peel strength was 1.27 N/mm in the condition of 170℃, the lowest peel strength was 0.89 N/mm in the condition of 130℃. The efficiency was almost constant regardless of the curing conditions at an average of 20%. However, the standard deviation of the fill factor increased as the adhesive strength decreased.

A Study On Fatigue Properties Of BeCu Thin Film For Probe Tip (프루브 팁용 BeCu 박막의 피로성질 연구)

  • Shin, Myung-Soo;Park, Jun-Hyub;Seo, Jeong-Yun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.256-259
    • /
    • 2008
  • An micro-probe tip must be manufactured using thin film to evaluate integrity of the semiconductor with narrow distance between pads. In this study, fatigue tests were performed for BeCu thin film which is used in micro-probe tip of semiconductor test machine. The thin film was manufactured by electro plating process, and the specimens were fabricated by wire-cut electric discharge method to make hour glass type specimen of $5000{\mu}m$ width, $29200{\mu}m$ length and $30{\mu}m$ thickness. The fatigue test of load control with 10Hz frequency was performed, in ambient environment. The fatigue cycles were tension-tension with mean stress, at stress ratio, R=0.1.

  • PDF

Tool Holder Design and Cutting Force Measurement of Diamond Turning Process (다이아몬드 터닝의 미세 절삭력 측정을 위한 tool holder 설계 및 절삭력 측정)

  • Jeong, S.H.;Kim, S.S.;Do, C.J.;Hong, K.H.;Kim, G.H.;Rui, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.507-512
    • /
    • 2001
  • In this work, tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces.

  • PDF

Measurement of Cutting Force in Diamond Turning Process (다이아몬드 터닝의 절삭력 측정용 tool holder를 이용한 미세절삭력 특성 연구)

  • 정상화;김상석;도철진;홍권희;김건희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.938-941
    • /
    • 2001
  • A tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. In this research, tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. In addition, tool holder system is verified by vibration test using accelerometer. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Cutting velocity has been determined to have negligible effects between 4 and 21㎧.(6) Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a sample model may not be sufficient to describe the forces produced in the diamond turning process.

  • PDF

A Study for the Improvement of the Life Cycle of Press Die using Wire Cut Discharge Machining (와이어 컷 방전가공 시 프레스금형 수명 향상에 대한 고찰)

  • Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.61-67
    • /
    • 2017
  • Research into the selection of suitable materials and the development of fast processing methods for press die manufacturing is absolutely necessary to reduce the production time and cost. In particular, knowledge of its heat properties must be considered whendeveloping a long press die. Generally, as the main component materials of press dies, Cr, W low alloy tool steel, high carbon-high chrome steel, high speed steel, etc., are used as thetooling steel for the cold die. Machine tools and wire-cut electric discharge machining are mainly used for processing the press die parts. There are many differences in the machining time and life cycle of die parts depending on the machining process. The parts produced by milling and grinding have a high manufacturing time and cost with a long life cycle, while thosemade by milling and wire-cut discharge machining have areduced manufacturing time and cost,whereastheir die life cycle is reduced. Therefore, in this study, we will discuss amethod of improving the life cycle of the die parts by using heat treatment as a processing method that reduces the manufacturing time and cost. SEM, EDS analysis and the surface roughness analysis of the surface and center of the workpiece are used for analyzing the specimens produced by three machining methods, viz. milling - grinding, milling - wire cut discharge, and milling - wire cut discharge - heat treatment. A method of making die parts having the same life cycle as those produced by milling - grinding is developed with the milling - wire cut discharge - high temperature tempering method.

Frequency Agile Properties of Microstrip Antenna Using Quartz (안테나의 주파수 특성에 관한 연구)

  • Yun, Chang-Jin;Ha, Yong-Man;Hwang, Hyun-Suk;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.715-718
    • /
    • 2002
  • This paper investigated that resonant frequencies of microstrip patch antenna were agile when piezoelectric materials were used as the antenna substrates. When the bias is applied on them, thickness of the substrate is varied according. to the piezoelectric phenomenon. The microstrip patch antenna using Quartz substrate was fabricated and designed by Ensemble v 7.0 simulator. We fabricated the microstrip antennas using Quartz(Y-cut) as its substrate. When the operating frequencies of the microstrip antenna were 7.045GHz, 7.773GHz 8.18GHz the frequency shifts versus electric field, Emax=4[kV/cm], were 21MHz, 26MHz and 28MHz, respectively.

  • PDF