• Title/Summary/Keyword: electric current density

Search Result 658, Processing Time 0.025 seconds

Electrochemical Performance of a Metal-supported Solid Oxide Electrolysis Cell

  • Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.121-125
    • /
    • 2019
  • A YSZ electrolyte based ceramic supported Solid Oxide Cell (SOC) and a metal interconnect supported SOC was investigated under both fuel cell and co-electrolysis (steam and $CO_2$) mode at $800^{\circ}C$. The single cell performance was analyzed by impedance spectra and product gas composition with gas chromatography(GC). The long-term performance in the co-electrolysis mode under a current density of $800mA/cm^2$ was obtained using steam and carbon dioxide ($CO_2$) mixed gas condition.

Research on the Relation between Transformer Oil Flow Electrification and Electrostatic Current

  • Fu, Qiang;Wang, Rui;Zou, Pinguo;Li, Zhao;Yang, Yang;Xie, Xuejun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.610-615
    • /
    • 2015
  • In order to study and obtain the mathematical relation between the electrification degree of transformer oil flow and the electrostatic current, a small amount of data about the electrification degree of oil flow and the corresponding electrostatic current is studied by linear regression method and grey model method. The results show that the linear correlation between the electrification degree and the electrostatic current was not good, and the relation between the electrification degree of oil flow and electrostatic current (i) could be expressed as ${\rho}(0)=0.2049\;i^{(0)}+169.4419$ according to grey model GM (0, 2) when the electrification degree of oil flow is represented by the charge number generated from transformer oil per unit volume, namely the charge density (${\rho}$).

Evaluation of Durability for Al Alloy with Anodizing Condition (알루미늄 합금의 양극산화 조건에 따른 내구성 평가)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.152-152
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. It is a technique to develop metals for various uses, and extensive research on the commercial use has been performed for a long time. Aluminum anodic oxide (AAO) is generate oxide films, whose sizes and characteristics depending on the types of electrolytes, voltages, temperatures and time. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. The sulfuric acid was used as an anodizing electrolyte, controlling its temperature to $10^{\circ}C$. The anode was 5083 Al alloy with dimension of $5(t){\times}20{\times}20mm$ while the cathode was the platinum. The distance between the anode and the cathode was maintained at 3 cm. Agitation was introduced by magnetic stirrer at 300 rpm to prevent localized temperature rise that hinders stable growth of oxide layer. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition for $10^{\circ}C$, 10 vol.%, respectively. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant rate. In addition, using galvanostatic method, it was maintained at current density of $10{\sim}30mA/cm^2$ for 40 minutes. The cavitation experiment was carried out with an ultrasonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1 mm. The specimen after the experiment was cleaned in an ultrasonic, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the investigation, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with applied current density.

  • PDF

Growth and Electrical Characteristics of Ultrathin $SiO_2$ Film Formed in an Electron Cyclotron Resonance Oxygen Plasma (ECR 산소 플라즈마에 의한 $SiO_2$ 박막의 성장 거동 및 전기적 특성)

  • 안성덕;이원종
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.371-377
    • /
    • 1995
  • Silicon oxide films were grown on single-crystal silicon substrates at low temperatures (25~205$^{\circ}C$) in a low pressure electron cyclotron resonance (ECR) oxygen plasma. The growth rate of the silicon oxide film increased as the temperature increased or the pressure decreased. Also, the thickness of the silicon oxide film increased at negative bias voltage, but not changed at positive bias voltage. The growth law of the silicon oxide film was approximated to the parabolic form. Capacitance-voltage (C-V) and current density-electric field (J-E) characteristics were studied using Al/SiO2/p-Si MOS structures. For a 10.2 nm thick silicon oxide film, the leakage current density at the electric field of 1 MVcm-1 was less than 1.0$\times$10-8Acm-2 and the breakdown field was higher than 10 MVcm-1. The flat band voltage of Al/SiO2/p-Si MOS capacitor was varied in the range of -2~-3 V and the effective dielectric constant was 3.85. These results indicate that high quality oxide films with properties that are similar to those of thermal oxide film can be fastly grown at low temperature using the ECR oxygen plasma.

  • PDF

Solution of TE Scattering by a Conductive Strip Grating Over the Grounded Two Dielectric Layers with Edge Boundary Condition (모서리 경계조건을 만족하는 접지된 2개 유전체층 위의 도체띠 격자구조에 의한 TE 산란의 해)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.183-188
    • /
    • 2013
  • In this paper, the TE (Transverse Electric) scattering problems by a perfectly conducting strip grating over a grounded two dielectric layers with edge boundary condition are analyzed by applying the FGMM (Fourier Galerkin Moment Method). For the TE scattering problem, the induced surface current density is expected to the zero value at both edges of the strip, then the induced surface current density on the strip is expanded in a series of the multiplication of the Chebyshev polynomials of the second kind and the functions of appropriate edge boundary condition. The numerical results shown the fast convergent solution and good agreement compared to those of the existing papers.

Solution of the TE Scattering by a Resistive Strip Grating Over Grounded Dielectric Plane with Edge Boundary Condition (모서리 경계조건을 만족하는 접지된 유전체평면위의 저항띠 격자구조에 의한 TE 산란의 해)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.196-202
    • /
    • 2007
  • In this paper, The TE(transverse electric) scattering problems by a resistive strip grating over a grounded dielectric plane with edge boundary condition are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. For a TE scattering problem, the induced surface current density is expected to the zero value at both edges of the resistive strip, then the induced surface current density on the resistive strip is expanded in a series of the multiplication of Gegenbauer(Ultraspherical) polynomials with the first order and functions of appropriate edge boundary condition. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 100 ohms/square and R = 0 as a conductive strip case show in good agreement with those in the existing papers.

  • PDF

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

Effect of Temperature on Current Density of Nano Composite XLPE Material (나노복합체를 함유한 XLPE의 전류밀도에 미치는 온도의 영향)

  • Jung, Hyun-Jung;Yang, Yi-Seul;Nam, Jin-Ho;Nam, Gi-Joon;Kim, Dong-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.413-417
    • /
    • 2019
  • In this study, the volume resistivity of XLPE materials with various voltage ratings was discussed. The volume resistivity of the developed XPLE nanocomposite was measured, and the conductivity mechanism of the material was also examined. The ASTM D 257 and IEC 60093 measurement methods were used for these tests. The equipment was designed to measure up to a temperature of $200^{\circ}C$, and the electrode structure was designed to maintain the thickness and temperature uniformity of the sample. The conductivity of the sample decreased with temperature, and the samples reached saturation within 500s, after which the conductivity leveled off. By analyzing the current density and the electric field, we can well explain the electric conductivity behavior of our sample with the Schottky mechanism.

Thermal Gradient Change of T-shaped Mg Alloy Specimen Exposed to Electropulses (전류펄스 인가된 T자형 Mg 합금 시편의 온도 구배 변화)

  • J.H. Song;D.J. Park;S. Cheon;J. Yu;S.H. Lee;T. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.4
    • /
    • pp.285-290
    • /
    • 2024
  • Electropulsing treatment (EPT) has been developed as an alternative to furnace heat treatment (FHT) to exploit its engineering advantages in rapidly annealing metallic materials. Conventionally, the separation of thermal and athermal effects of EPT has been attempted by comparing EPT and FHT specimens processed under identical temperature and duration. However, this method inherently introduces experimental and measurement errors. This study proposes a novel approach to distinguish the thermal and athermal effects of EPT-processed metals using T-shaped specimen with two observation points, namely 'C' and 'D'. For verification, the thermal gradient of T-shaped Mg alloys was examined under various EPT conditions. The points C exhibited higher temperatures compared to those at points D at a given electric current density, because only the former received both thermal and athermal effects. It was confirmed from twelve specimens that the point C at an electric current density of 65 A·mm-2 and point D at 70 A·mm-2 exhibited similar temperatures. This developed method is expected to reduce measurement errors in distinguishing thermal and athermal effects, thus providing a deeper understanding of their quantitative contributions in future studies.

Characteristics calculation on radio frequency power transfer in a planar inductively coupled plasma source (평면형 유도결합 플라즈마 장치에서의 RF 전력 전달 특성 계산)

  • 이정순;정태훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.368-375
    • /
    • 1999
  • The Maxwell equation and the transformer equivalent-circuit model are applied to a radio frequency planar inductively coupled plasma. The spatial distribution of the vector potential, the magnetic field, and the electric field are obtained analytically. As a result, the plasma current, the mutual inductance between the coil and the plasma, and the self inductance of plasma are found to increase with increasing skin depth. The spatial distribution of absorbed power has maximum where the antenna coil exists, and has a similar profile to that of the induced electric field. The power transfer efficiency is found to increase with increasing gas pressure before a saturation around p+ 20mTorr, while it shows an increase with the plasma density before a slight decrease around a density of $5\times10^{11}/\textrm{cm}^3$.

  • PDF