• Title/Summary/Keyword: electric constant

Search Result 1,069, Processing Time 0.026 seconds

Induction Heated Load Resonant Tank High Frequency Inverter with Asymmetrical Auxiliary Active Edge-Resonant Soft-Switching Scheme

  • Saha Bishwajit;Fathy Khairy;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.200-202
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbing circuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft-switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

A Study on the Photon Energy Characteristics of ZnO Thin Film According to Coating Thickness (ZnO 박막의 증착 두께에 따른 Photon Energy 특성에 관한 연구)

  • Lee, Jung-Il;Seo, Jang-Soo;Jung, Sung-Gyo;Kim, Byung-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.75-81
    • /
    • 2003
  • This study evaporates ZnO layer thickness differently with RF sputtering method on Si Wafer(n-100). This study is performed to examine the characteristics of photon energy and dielectric loss according to the thickness of ZnO and increase the reliability and reproduction of ZnO thin film. It is confirmed that the variation of electric Permittivity by frequency is resulted from the formation of particles within thin film, the particle size and the polarization on grain boundary. Peak of electric Permittivity value of thin film has slower and less value in early low wavelength by the coulomb force involved in carrier combination according to the increase of frequency. Reversal of electric Permittivity values is induced by dipole polarization shown in the dielectric of thin film. Complex electric constant $({\varepsilon}_1{\varepsilon}_2)$ has larger peak values as it’s thickness is thinner and then it is larger according to the increase of frequency. Electric Permittivity by photon energy has large value in imaginary number and is reduced exponentially by the increase of carrier density according to that of photon energy.

  • PDF

Electric power consumption predictive modeling of an electric propulsion ship considering the marine environment

  • Lim, Chae-og;Park, Byeong-cheol;Lee, Jae-chul;Kim, Eun Soo;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.765-781
    • /
    • 2019
  • This study predicts the power consumption of an Electric Propulsion Ship (EPS) in marine environment. The EPS is driven by a propeller rotated by a propulsion motor, and the power consumption of the propeller changes by the marine environment. The propulsion motor consumes the highest percentage of the ships' total power. Therefore, it is necessary to predict the power consumption and determine the power generation capacity and the propeller capacity to design an efficient EPS. This study constructs a power estimation simulator for EPS by using a ship motion model including marine environment and an electric power consumption model. The usage factor that represents the relationship between power consumption and propulsion is applied to the simulator for power prediction. Four marine environment scenarios are set up and the power consumed by the propeller to maintain a constant ship speed according to the marine environment is predicted in each scenario.

Feasibility Study for Application of Frequency Regulation ESS in Cuba: Technological Effects on Improving Frequency Compensation (쿠바 주파수조정 ESS 운영 전략 검토: 주파수 보상 효과 분석)

  • Kim, Soo-Yeol;Lee, Seong-eun;Kim, Jin-tae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.123-127
    • /
    • 2020
  • KEPCO has installed Frequency Regulation ESS (FR ESS) of 376 MW since 2015. Frequency Regulation is ancillary service to support stabilizing system frequency, which is divided into governor free and automatic generation control. KEPCO operates FR ESS as governor free application and leads FR ESS market with capability of diverse demonstration and operation experiences. To expand FR ESS role during transient states of power system, KEPCO has extended operating time of charging and discharging. KEPCO has also changed speed droop lower than before to improve contribution on frequency compensation, and acquired much experiences of differentiating bad cells from others. Based on these technologies and know-hows, KEPCO Research Institutes received request of feasibility study and technical cooperation for overseas FR ESS business. This paper suggests the simple and practical method for making technological feasibility study of FR ESS.

Identification of Closed Loop System by Subspace Method (부분공간법에 의한 페루프 시스템의 동정)

  • Lee, Dong-Cheol;Bae, Jong-Il;Hong, Soon-Il;Kim, Jong-Kyung;Jo, Bong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2143-2145
    • /
    • 2003
  • In the linear system identification using the discrete time constant coefficients, there is a subspace method based on 4SID recently much suggested instead of the parametric method like as the maximum likelihood method. The subspace method is not related with the impulse response and difference equation in its input-output equation, but with the system matrix of the direct state space model from the input-output data. The subspace method is a very useful tool to adopt in the multivariable system identification, but it has a shortage unable to adopt in the closed-loop system identification. In this paper, we are suggested the methods to get rid of the shortage of the subspace method in the closed-loop system identification. The subspace method is used in the estimate of the output prediction values from the estimating of the state space vector. And we have compared the results with the outputs of the recursive least square method in the numerical simulation.

  • PDF

The Photon Energy Characteristics of ZnO Thin Film Fabricated by RF Sputtering (RF Sputtering으로 제작한 ZnO 박막의 Photon Energy 특성)

  • Kim, Byung-In;Kim, Won-Bae;Chung, Seong-Gyo;Kim, Duck-Tae;Choi, Young-Il;Kim, Hyung-Gon;Song, Chan-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.73-79
    • /
    • 2002
  • This study evaporates ZnO layer thickness' differently with RF sputtering method on Si Wafer(n-100). This study is performed to examine the characteristics of photon energy and dielectric loss according to the thickness of ZnO and increase the reliability and reproduction of ZnO thin film. It is confirmed that the variation of electric Permittivity by frequency is resulted from the formation of particles within thin film, the particle size and the polarization on grain boundary. Peak of electric Permittivity value of thin film has slower and less value in early low wavelength by the coulomb force involved in carrier combination according to the increase of frequency. Reversal of electric Permittivity values is induced by dipole polarization shown in the dielectric of thin film. Complex electric constant $({\varepsilon}_1,{\varepsilon}_2)$ has larger peak values as it's thickness is thinner and then it is larger according to the increase of frequency. Electric Permittivity by photon energy has large value in imaginary number and is reduced exponentially by the increase of carrier density according to that of photon energy.

  • PDF

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.

Electro-Osmotic Dewatering under Electro-Osmotic Pulse Technology

  • Kim, Jitae;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.423-433
    • /
    • 2020
  • Direct current (DC) electric fields have been used for electro-osmotic dewatering. Under DC conditions, however, the electrical contact resistance between the electrode and the dewatering material increases considerably during the process of dewatering. Such a circumstance hinders the continuation of effective electro-osmotic dewatering. To reduce this hindrance, an applied pulse electric field with periodic reversals of the electrode polarity should improve electro-osmotic dewatering. In this study, electro-osmotic dewatering under pulse conditions was experimentally investigated for electrode polarity reversals. During the dewatering process, the pulse electric field was able to reduce the hindrance caused by the DC, resulting in an increased final dewatered amount relative to that under a DC electric field. For a constant applied voltage, the reversed polarity condition, under which the electric current passing through the material was almost unchanged with time, yielded the maximum final dewatered amount. This technique can be used to enhance drainage from a water storage facility during a period of extreme drought and the seawater desalination plants using reverse osmosis in drought stricken coastal regions.

Analysis of Groundwater Conductivity and Water Temperature Changes in Greenhouse Complex by Water Curtain Cultivation (수막용수 사용으로 인한 시설재배지역의 지하수 수온과 전기전도도 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.93-103
    • /
    • 2023
  • This study aimed to analyze the impact of water curtain cultivation in the greenhouse complexes on groundwater's electric conductivity and water temperature. The greenhouse complexes are mainly situated along rivers to secure water resources for water curtain cultivation. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. As a result of analyzing the electric conductivity and water temperature, the following differences were found in the observed characteristics by region. 1) The electric conductivity and water temperature of the riverside area, where the permeability is high and close to rivers, showed a constant pattern of annual changes due to the influence of river flow and precipitation. 2) The flat land in general agricultural areas showed general characteristics of bedrock observation in the case of water temperature. Still, it seemed more affected by the surrounding well's water use and water quality. The electric conductivity did not show any particular trend and was influenced by the surrounding environment according to the location of each point.

Analysis of Insulation Characteristics for Transformer Insulating Materials According to Thermal Degradation (열 열화에 따른 변압기 절연물의 절연특성 분석)

  • Lee, Min-Gu;Shim, Jae-Myung;Lim, Kyung-Bum;Lee, Dae-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1688-1693
    • /
    • 2016
  • In this study shall investigate the influence upon the electrical property of transformer oil due to the heat among accelerated heat degradation experiment for a constant hour in the typical insulation oils of mineral base oil, silicon base oil and vegetable oil. In addition, the electric insulation performance of insulation materials in transformer shall be evaluated through the electric property analysis according to the heat degradation of epoxy insulation material, which has been used for electric facilities such as a molded transformer.