• Title/Summary/Keyword: elastic-plastic behavior

Search Result 500, Processing Time 0.028 seconds

The Evaluation of Fracture Toughness of SMC Composite Material and Carbon/Epoxy Composite Material (SMC 복합재료와 Carbon/Epoxy 복합재료의 파괴인성평가)

  • 최영근;이유태;이태순
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.25-32
    • /
    • 1993
  • In composite materials, the fracture perpendicular to the fiber direction usually shows a non-linear behavior accompannying blunting and plastic deformation around the crack tip. In this study, the fracture thoughness in random short fiber SMC composite material and Carbon/Epoxy composite material is estimated by the A.M.(Area Method) and the G.L.M.(Generalized Locus Method) which can determine a stable total energy release rate(G$_T$) not only in highly elghly elastic material but also in highly non-linear materials.

  • PDF

Thermal contact resistance on elastoplastic nanosized contact spots (탄소성접촉면의 나노스케일 열접촉저항)

  • Lee, Sang-Young;Cho, Hyun;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2214-2219
    • /
    • 2008
  • The thermal contact resistance(TCR) of nanosized contact spots has been investigated through a multiscale analysis which considers the resolution of surface topography. A numerical simulation is performed on the finite element model of rough surfaces. Especially, as the contact size decreases below the phonon mean free path, the size dependent thermal conductivity is considered to calculate the TCR. In our earlier model which follows an elastic material, the TCR increases without limits as the number of nanosized contact spots increases in the process of scale variation. However, the elastoplastic contact induces a finite limit of TCR as the scale varies. The results are explained through the plastic behavior of the two contacting models. Furthermore, the effect of air conduction in nanoscale is also investigated.

  • PDF

A Study on Application of High-Strength Vertical Stiffeners to Plate Girder (판형교에 고강도 수직보강재 적용에 관한 연구)

  • Chang, Kyong-Ho;Kang, Jae-Hoon;Jang, Gab-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.137-144
    • /
    • 2004
  • Recently, as steel structures become higher and more long-spanned, application of high-strength steels is increasing gradually. However, criteria and example for design of high-strength steel are not built up. exiting criteria for structural steels is not proper for economical design of high-strength steel. Moreover, exiting criteria will be decrease the fatigue performance of steel bridge using high-strength steel. Therefore, criterion for application of high-strength steel must be established. In this paper, the behavior of plate girder using high-strength vertical stiffeners was clarified by carrying out layer elastic-plastic finite element analysis using finite deformation theory. In order to optimize the design and construction of plate girder using high-strength vertical stiffener, criterion for application of high-strength vertical stiffener is proposed.

  • PDF

A Study on the Safety Evaluation of Design for Piping Materials(III) (배관용 재료의 설계시 안전성 평가에 관한 연구(III))

  • 김복기
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 1996
  • For the assessment of fracture behaviors of structural components, various fracture mechanics parameters have been applied to date. New approaches to analyze structural fracture performance under elastic-plastic condition have been proposed by the development of testing methods for characterization of material behavior which is defying to the analysis by conventional fracture parameters. In this study, on the assumption that, initiation of crack propagation of a piping materials occurs when the crack tip strain field reaches "the local fracture strain", following two major issues are discussed ; 1) The relationship between the critical value of J-integral($J_{IC}$) and the local fracture strain (${\varepsilon}_c$) in uniaxial tensile test in the region of maximum reduction area was described. 2) To proved the validity of above relations a series of tests were performed under various temperature and on the different piping materials.materials.

  • PDF

A Study on the Reheat Crack around Welded Joint of Pressusre Vessel with 21/4Cr-1Mo Steel (21/4Cr-1Mo강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구)

  • Bang, Han Seo;Kim, Jong Myeong
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.227-227
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, 2 ¼Cr-1Mo steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence. (Received December 2, 1999)

A Study on the Reheat Crack around Welded Joint of Pressure Vessel with $2\frac{1}{4}Cr-1Mo$ Steel ($2\frac{1}{4}Cr-1Mo$강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.100-104
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, $2\frac{1}{4}Cr-1Mo$ steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence.

  • PDF

The Analysis of Tunnel Behavior using Different Constitutive Models (다양한 구성방정식에 따른 터널 거동해석)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.73-81
    • /
    • 2010
  • The paper presents the application of FE simulations of NATM tunnel using different constitutive models. The results from a series of two dimensional plane strain finite element analyses of medium-liner interaction for NATM are presented. Four types of constitutive models are considered, namely, linear elastic, elasto-plastic Mohr-Coulomb, Hardening-Soil, Soft-Soil model. The design for tunnels requires a proper estimate of surface settlement and lining forces. It is shown that the advanced constitutive model gives better predictions for both ground movement and structural forces.

Tensile Properties of Carbon-Glass/Epoxy Hybrid Laminates Produced by VARTM (VARTM 법으로 제작한 탄소-유리/에폭시 하이브리드 적층재의 인장 특성)

  • Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.760-765
    • /
    • 2011
  • This paper presents a study of the tensile behavior of carbon and glass fiber reinforced epoxy hybrid laminates manufactured by vacuum assisted resin transfer molding (VARTM). The objective of this study was to develop and characterize carbon fiber reinforced plastic hybrid composite material that is low cost and light-weight and that possesses adequate strength and stiffness. The effect of position and content of the glass fabric layer on the tensile properties of the hybrid laminates was examined. The strength and stiffness of the hybrid laminates showed a steady decrease with an increase of the glass fabric content this decrease was almost linear. Fracture strain of these laminates showed a slight increasing trend when glass fabric content was increased up to 3 layers, but at a glass fabric content > 3 layers the strain was almost constant. When glass fabric layers were at both outer surfaces, the hybrid laminate exhibited a slightly higher tensile strength and elastic modulus due to the small amount of glass yarn pull-out.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

  • Shen, Jianhua;Wu, Huaicheng;Zhang, Yuting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.418-428
    • /
    • 2017
  • In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII) is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.