DOI QR코드

DOI QR Code

Tensile Properties of Carbon-Glass/Epoxy Hybrid Laminates Produced by VARTM

VARTM 법으로 제작한 탄소-유리/에폭시 하이브리드 적층재의 인장 특성

  • Kim, Yonjig (Division of Mechanical Design Engineering, Chonbuk National University)
  • 김연직 (전북대학교 공과대학 기계설계공학부)
  • Received : 2011.05.17
  • Published : 2011.10.25

Abstract

This paper presents a study of the tensile behavior of carbon and glass fiber reinforced epoxy hybrid laminates manufactured by vacuum assisted resin transfer molding (VARTM). The objective of this study was to develop and characterize carbon fiber reinforced plastic hybrid composite material that is low cost and light-weight and that possesses adequate strength and stiffness. The effect of position and content of the glass fabric layer on the tensile properties of the hybrid laminates was examined. The strength and stiffness of the hybrid laminates showed a steady decrease with an increase of the glass fabric content this decrease was almost linear. Fracture strain of these laminates showed a slight increasing trend when glass fabric content was increased up to 3 layers, but at a glass fabric content > 3 layers the strain was almost constant. When glass fabric layers were at both outer surfaces, the hybrid laminate exhibited a slightly higher tensile strength and elastic modulus due to the small amount of glass yarn pull-out.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. A. Varvani-Farahani, Appl. Compos. Mater. 17, 63 (2010). https://doi.org/10.1007/s10443-009-9107-5
  2. M. Sakai, R. C. Bradt, and D. B. Fischbach, J. Mater. Sci. 21, 1491 (1986). https://doi.org/10.1007/BF01114701
  3. M. Sakai, T. Miyajima, and M. Inagaki, Compos. Sci. and Technol. 40, 231 (1991). https://doi.org/10.1016/0266-3538(91)90083-2
  4. S. E. Artemenko and Yu. A. Kadykova, Fibre Chemistry 40, 490 (2008). https://doi.org/10.1007/s10692-009-9091-4
  5. G. Reyes-Villanueva and S. Gupta, J. Mater. Sci. 41, 6142 (2006). https://doi.org/10.1007/s10853-006-0371-6
  6. A. Vlot, Int. J. Impact Eng. 18, 291 (1996). https://doi.org/10.1016/0734-743X(96)89050-6
  7. Moe Moe Thwe and Kin Liao, J. Mater. Sci. Letters 19, 1873 (2000). https://doi.org/10.1023/A:1006731531661
  8. A. C. Karmaker, J. Mater. Sci. Letters 16, 462 (1997). https://doi.org/10.1023/A:1018508209022
  9. D. Stavropoulos and G. C. Papanicolaou, J. Mater. Sci. 32, 931 (1997). https://doi.org/10.1023/A:1018553617046
  10. A. N. Banerjee, N. Saha, and B. C. Mitra, J. Appl. Polym. Sci. 60, 139 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960404)60:1<139::AID-APP16>3.0.CO;2-3
  11. M. P. Cavatorta, J. Mater. Sci. 42, 8636 (2007). https://doi.org/10.1007/s10853-007-1847-8
  12. R. Park and J. Jang, J. Mater. Sci. 36, 2359 (2001). https://doi.org/10.1023/A:1017545528304
  13. A. Haque, L. Mooreheed, D. P. Zadoo, and S. JeeLani, 25, 4639 (1990). https://doi.org/10.1007/BF01129919
  14. A. A. J. M. Peijs, R. W. Venderbosch, and P. J. Lemstra, Composites 21, 522 (1990). https://doi.org/10.1016/0010-4361(90)90425-V
  15. ASTM Standard D638-10, ASTM, West Conshohocken, PA, USA (2010).
  16. S. Woo, N. Choi, and Y. Chang, J. Mech. Sci. Tech 21, 1937 (2007). https://doi.org/10.1007/BF03177451