• 제목/요약/키워드: elastic-plastic analysis static analysis

검색결과 65건 처리시간 0.026초

재하속도에 따른 SM490강재 원형강기둥의 이력거동 특성 (Characteristics of Hysteretic Behavior of Circular Steel Column using SM490 for Loading Rate)

  • 장갑철;장경호
    • 대한토목학회논문집
    • /
    • 제26권6A호
    • /
    • pp.935-941
    • /
    • 2006
  • 지진과 같은 동적반복하중을 받은 강구조물은 정적하중시와 다른 이력거동을 보인다. 이는 동적변형중인 구조용 강재는 정적상태와 다른 역학적 특성 및 응력-변형률 관계를 보이기 때문이다. 즉, 지진하중을 받는 원형 강기둥과 같은 강구조물의 이력거동을 정확히 예측하기 위해서는 정동적 변형 상태를 가정한 재하속도에 따른 대상구조물 내하력 및 변형의 차이점을 명확히 파악해야 한다. 이에 본 연구에서는 저자에 의해 제안된 SM490강재의 동적 반복소성모델과 이를 적용한 3차원 탄소성 유한요소해석을 이용하여 재하속도와 지름-두께(D/t)비를 변수로한 SM490 원형강기동의 동적해석을 수행하였다. 해석 결과를 통하여 정적에서 동적변형상태로 재하속도 변화에 따른 SM490 원형강기둥의 이력거동 특성 즉, 내하력 및 에너지소산효율의 변화를 명확히 파악하였다.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

Structural safety redundancy-based design method for structure with viscous dampers

  • Hao, Linfei;Zhang, Ruifu
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.821-840
    • /
    • 2016
  • A simple design process is proposed for supplemental viscous dampers based on structural safety redundancy. In this process, the safety redundancy of the primary structure without a damper is assessed by the capacity and response spectra. The required damping ratio that should be provided by the supplemental dampers is estimated by taking the structural safety redundancy as a design target. The arrangement of dampers is determined according to the drift distribution obtained by performing pushover analysis. A benchmark model is used to illustrate and verify the validity of this design process. The results show that the structural safety redundancy of the structure provided by the viscous dampers increases to approximately twice that of the structure without a damper and is close to the design target. Compared with the existing design methods, the proposed process can estimate the elastic-plastic response of a structure more easily by using static calculation, and determine the required damping ratio more directly without iterative calculation or graphical process. It can be concluded that the proposed process is simple and effective.

Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method

  • Nguyen, Phu-Cuong;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1121-1144
    • /
    • 2016
  • This paper presents a displacement-based finite element procedure for second-order distributed plasticity analysis of planar steel frames with semi-rigid beam-to-column connections under static loadings. A partially strain-hardening elastic-plastic beam-column element, which directly takes into account geometric nonlinearity, gradual yielding of material, and flexibility of semi-rigid connections, is proposed. The second-order effects and distributed plasticity are considered by dividing the member into several sub-elements and meshing the cross-section into several fibers. A new nonlinear solution procedure based on the combination of the Newton-Raphson equilibrium iterative algorithm and the constant work method for adjusting the incremental load factor is proposed for solving nonlinear equilibrium equations. The nonlinear inelastic behavior predicted by the proposed program compares well with previous studies. Coupling effects of three primary sources of nonlinearity, geometric imperfections, and residual stress are investigated and discussed in this paper.

Linear elastic and limit state solutions of beam string structures by the Ritz-method

  • Xue, Weichen;Liu, Sheng
    • Structural Engineering and Mechanics
    • /
    • 제35권1호
    • /
    • pp.67-82
    • /
    • 2010
  • The beam string structure (BSS) has been widely applied in large span roof structures, while no analytical solutions of BSS were derived for it in the existing literature. In the first part of this paper, calculation formulas of displacement and internal forces were obtained by the Ritz-method for the most commonly used arc-shaped BSS under the vertical uniformly distributed load and the prestressing force. Then, the failure mode of BSS was proposed based on the static equilibrium. On condition the structural stability was reliable, BSS under the uniformly distributed load would fail by tensile strength failure of the string, and the beam remained in the elastic or semi-plastic range. On this basis, the limit load of BSS was given in virtue of the elastic solutions. In order to verify the linear elastic and limit state solutions proposed in this paper, three BSS modal were tested and the corresponding elastoplastic large deformation analysis was performed by the ANSYS program. The proposed failure mode of BSS was proved to be correct, and the analytical results for the linear elastic and limit state were in good agreement with the experimental and FEM results.

동적하중하에서의 강도적 불균질재의 연성크랙 발생한계의 해석적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제 2 보) - (Analytical Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 2) -)

  • 안규백;;;방한서
    • Journal of Welding and Joining
    • /
    • 제21권7호
    • /
    • pp.49-58
    • /
    • 2003
  • It has been well known that ductile fracture of steel is accelerated by triaxiality stresses. The characteristics of ductile crack initiation in steels are evaluate quantitatively using two-parameter criterion based on equivalent plastic strain and stress triaxiality. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameter, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on critical condition to initiate ductile crack using two-parameter. Then, the crack initiation testing were conducted under static and dynamic loading. To evaluate the stress/strain state in the specimens especially under dynamic loading, thermal elastic-plastic dynamic FE-analysis considering the temperature rise was used. The result showed that the critical global strain to initiate ductile fracture in specimens with strength mismatch under various loading rate cu be estimated based on the local criterion, that is two-parameter criterion obtained on homogeneous specimens under static tension, by mean of FE-analysis taken into account accurately both strength mismatch and dynamic loading effects on stress/strain behavior.

A method for analyzing the buckling strength of truss structures

  • Pan, Yi;Gu, Renqi;Zhang, Ming;Parke, Gerry;Behnejad, Alireza
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.129-139
    • /
    • 2019
  • This paper develops a new method for estimating the elastic-plastic buckling strength of the truss structures under the static and seismic loads. Firstly, a new method for estimating the buckling strength of the truss structures was derived based on the buckling strength of the representative member considering the parameters, such as the structure configurations, boundary conditions, etc. Secondly, the new method was verified through the buckling strength estimation and the finite element method (FEM) analysis of the single member models, portal frame models and simple truss models. Finally, the method was applied to evaluate the buckling strength of a simple truss structure under seismic load, and the failure loads between the proposed method and the FEM were analyzed reasonably. The results show that the new method is feasible and reliable for structure engineers to estimate the buckling strengths of the truss structures under the static loads and seismic loads.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

Elasto-plastic stability of circular cylindrical shells subjected to axial load, varying as a power function of time

  • Sofiyev, A.H.;Schnack, E.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • 제24권5호
    • /
    • pp.621-639
    • /
    • 2006
  • Stability of a cylindrical shell subject to a uniform axial compression, which is a power function of time, is examined within the framework of small strain elasto-plasticity. The material of the shell is incompressible and the effect of the elastic unloading is considered. Initially, employing the infinitesimal elastic-plastic deformation theory, the fundamental relations and Donnell type stability equations for a cylindrical shell have been obtained. Then, employing Galerkin's method, those equations have been reduced to a time dependent differential equation with variable coefficient. Finally, for two initial conditions applying a Ritz type variational method, the critical static and dynamic axial loads, the corresponding wave numbers and dynamic factor have been found. Using those results, the effects of the variations of loading parameters and the variations of power of time in the axial load expression as well as the variations of the radius to thickness ratio on the critical parameters of the shells for two initial conditions are also elucidated. Comparing results with those in the literature validates the present analysis.

경계요소법에 의한 2차원 탄소성응력해석 (Two Dimensional Elasto-plastic Stress Analysis by the B.E.M.)

  • 조희찬;김희송
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.621-629
    • /
    • 1992
  • 본 연구에서는 Kelvin의 기본해와 초기응력 증분에 의해 정식화된 경계적분방 정식을 이용하여 점차적으로 외력을 증가시켰을 때, 선형등방경화재에 국부적으로 생 기는 항복영역과 항복하중, 탄소성 응력해석등을 재료비선형문제로 해석하였다. 이 때 초기응력 증분을 결정함에 있어서 종래에는 등가 소성변형률을 수렴판정으로 해석 하였지만, 이는 구분적인 선형 경화재와 온도 의존성 문제에는 적당하지 않으므로 암 기용일등은 등가응력과 응력-변형률 선도를 이용하여 수렴판정을 하였다. 그러나 이 방법은 소성역에서의 기울기가 변화하는 곳에서는 피할 수 없는 오차가 존재한다. 따라서 여기에서는 계산된 초기응력 증분에 의한 초기 탄성변형률에너지 증분과 응력 -변형률선도로 부터 구해지는 초기 탄성변형률에너지 증분을 이용한 수렴판정으로 초 기응력증분을 결정하였다. 또한, 내부영역적분을 일부 해석적인 적분과 수치적분을 병행한 경우와 전부 수치적분방법으로 내압을 받는 실린더와 단순 인장하중이 작용하 는 양편 Ⅴ형 노치를 갖는 박판의 경우에 적용하여 해석하였으며, 그 결과를 유한요소 법 프로그램인 NISA(numerically integrated elements for system analysis)로 구한 결과치와 비교, 고찰하였다.