두 개 수신기에 들어오는 신호 간의 시간 지연 추정 기술은 수중 음향 뿐만 아니라 실내 음향 및 로보틱스에 이르기까지 다양한 분야에서 응용되고 있는 기술이다. 시간 지연 추정 기술에는 수신기 사이 상호 상관으로부터 시간 지연량을 추정하는 방법이 한 기술 부류이고, 수신기 사이의 시간 지연을 파라메트릭 모델링을 하여 그 파라미터를 시스템 인식의 방법으로 추정하는 기술 부류가 있다. 두 부류 중 후자의 경우 시스템의 파라미터 중에서 지연과 직접 관련 있는 파라미터는 전체 중 극히 일부라는 특성이 있다. 이 특성을 이용하여 Lasso 정규화 같은 방법으로 추정 정확도를 높이기도 한다. 그러나 Lasso 정규화의 경우 필요한 정보가 소실되는 경우가 발생한다. 본 논문에서는 이를 보완하기 위해서 Lasso 정규화에 Ridge 정규화를 덧붙인 Elastic Net을 사용한 방법을 제안한다. 제안한 방법을 기존의 일반 상호 상관(Generalized Cross Correlation, GCC) 방법 및 Lasso 정규화를 사용한 방법과 비교하여, 백색 가우시안 신호원 및 유색 신호원에서도 추정 오차가 매우 적음을 보인다.
Vegetative Filter Strip (VFS) is the best management practice which has been widely used to mitigate water pollutants from agricultural fields by alleviating runoff and sediment. This study was conducted to improve an equation for estimating sediment trapping efficiency of VFS using several different regularization methods (i.e., ordinary least squares analysis, LASSO, ridge regression analysis and elastic net). The four different regularization methods were employed to develop the sediment trapping efficiency equation of VFS. Each regularization method indicated high accuracy in estimating the sediment trapping efficiency of VFS. Among the four regularization methods, the ridge method showed the most accurate results according to $R^2$, RMSE and MAPE which were 0.94, 7.31% and 14.63%, respectively. The equation developed in this study can be applied in watershed-scale hydrological models in order to estimate the sediment trapping efficiency of VFS in agricultural fields for an effective watershed management in Korea.
In recent years, genome-wide association (GWA) studies have successfully led to many discoveries of genetic variants affecting common complex traits, including height, blood pressure, and diabetes. Although GWA studies have made much progress in finding single nucleotide polymorphisms (SNPs) associated with many complex traits, such SNPs have been shown to explain only a very small proportion of the underlying genetic variance of complex traits. This is partly due to that fact that most current GWA studies have relied on single-marker approaches that identify single genetic factors individually and have limitations in considering the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and provide a better prediction of complex traits, since it utilizes combined information across variants. Recently, a new statistical method for joint identification of genetic variants for common complex traits via the elastic-net regularization method was proposed. In this study, we applied this joint identification approach to a large-scale GWA dataset (i.e., 8842 samples and 327,872 SNPs) in order to identify genetic variants of obesity for the Korean population. In addition, in order to test for the biological significance of the jointly identified SNPs, gene ontology and pathway enrichment analyses were further conducted.
고차원 유전체 자료를 사용하는 유전체 연관 분석에서는 벌점 우도함수 기반의 회귀계수 규제화 방법이 질병 및 표현형질에 영향을 주는 유전자를 발견하는데 많이 이용된다. 특히, 네트워크 기반의 규제화 방법은 유전체 연관성 연구에서의 유전체 경로나 신호 전달 경로와 같은 생물학적 네트워크 정보를 사용할 수 있으므로, Lasso나 Elastic-net과 같은 다른 규제화 방법들과 비교했을 경우 네트워크 기반의 규제화 방법이 보다 더 정확하게 관련 유전자들을 찾아낼 수 있다는 장점을 가지고 있다. 그러나 네트워크 기반의 규제화 방법은 그룹 구조를 갖고 있는 고차원 유전체 자료에는 적용시킬 수 없다는 문제점을 가지고 있다. 실제 SNP 데이터와 DNA 메틸화 데이터처럼 대다수의 고차원 유전체 자료는 그룹 구조를 가지고 있으므로 본 논문에서는 이러한 그룹 구조를 가지고 있는 고차원 유전체 자료를 분석하고자 네트워크 기반의 규제화 방법에 주성분 분석(principal component analysis; PCA)과 부분 최소 자승법(partial least square; PLS)과 같은 차원 축소 방법을 결합시키는 새로운 분석 방법을 제안하고자 한다. 새롭게 제안한 분석 방법은 몇 가지의 모의실험을 통해 변수 선택의 우수성을 입증하였으며, 또한 152명의 정상인들과 123명의 난소암 환자들로 구성된 고차원 DNA 메틸화 자료 분석에도 사용하였다. DNA 메틸화 자료는 대략 20,000여개의 CpG sites가 12,770개의 유전자에 포함되어 있는 그룹 구조를 가지고 있으며 Illumina Innium uman Methylation27 BeadChip으로부터 생성되었다. 분석 결과 우리는 실제로 암에 연관된 몇 가지의 유전자를 발견할 수 있었다.
Communications for Statistical Applications and Methods
/
제15권5호
/
pp.753-764
/
2008
The $L_1$ regularized estimator in quantile problems conduct parameter estimation and model selection simultaneously and have been shown to enjoy nice performance. However, $L_1$ regularized estimator has a drawback: when there are several highly correlated variables, it tends to pick only a few of them. To make up for it, the proposed method adopts doubly regularized framework with the mixture of $L_1$ and $L_2$ norms. As a result, the proposed method can select significant variables and encourage the highly correlated variables to be selected together. One of the most appealing features of the new algorithm is to construct the entire solution path of doubly regularized quantile estimator. From simulations and real data analysis, we investigate its performance.
텍스트데이터는 일반적으로 많은 단어로 이루어져 있다. 텍스트데이터와 같이 많은 변수로 구성된 데이터의 경우 과적합 등의 문제로 분석에 있어서의 정확성이 떨어지고, 계산과정에서의 효율성에도 문제가 발생하는 경우를 흔히 볼 수 있다. 이렇게 변수가 많은 데이터를 분석하기 위해 특징선택, 특징추출 등의 차원 축소 기법이 자주 사용되고 있다. 희소주성분분석은 벌점이 부여된 최소제곱법 중 하나로 엘라스틱넷 형태의 목적함수를 사용하여 유용하지 않은 주성분을 제거하고 각 주성분에서도 중요도가 큰 변수만 식별해내기 위해 활용되고 있다. 이 연구에서는 희소주성분분석을 이용하여 많은 변수를 가진 텍스트데이터를 소수의 변수만으로 요약하는 절차를 제안한다. 이러한 절차를 실제 데이터에 적용한 결과, 희소주성분분석을 이용하여 단어를 선택하는 과정을 통해 목표변수에 대한 정보를 이용하지 않고도 유용성이 낮은 단어를 제거하여 텍스트데이터의 분류 정확성은 유지하면서 데이터의 차원을 축소할 수 있음을 확인하였다. 특히 차원축소를 통해 고차원 데이터 분석에서 분류 정확도가 저하되는 KNN 분류기 등의 분류 성능을 개선할 수 있음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.