DOI QR코드

DOI QR Code

A Study on Regularization Methods to Evaluate the Sediment Trapping Efficiency of Vegetative Filter Strips

식생여과대 유사 저감 효율 산정을 위한 정규화 방안

  • Bae, JooHyun (Korea Water Environment Research Institute) ;
  • Han, Jeongho (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Yang, Jae E (Department of Biological Environment, Kangwon National University) ;
  • Kim, Jonggun (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lim, Kyoung Jae (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Jang, Won Seok (Sustainability Innovation Lab at Colorado (SILC), University of Colorado at Boulder)
  • Received : 2019.10.24
  • Accepted : 2019.10.29
  • Published : 2019.11.30

Abstract

Vegetative Filter Strip (VFS) is the best management practice which has been widely used to mitigate water pollutants from agricultural fields by alleviating runoff and sediment. This study was conducted to improve an equation for estimating sediment trapping efficiency of VFS using several different regularization methods (i.e., ordinary least squares analysis, LASSO, ridge regression analysis and elastic net). The four different regularization methods were employed to develop the sediment trapping efficiency equation of VFS. Each regularization method indicated high accuracy in estimating the sediment trapping efficiency of VFS. Among the four regularization methods, the ridge method showed the most accurate results according to $R^2$, RMSE and MAPE which were 0.94, 7.31% and 14.63%, respectively. The equation developed in this study can be applied in watershed-scale hydrological models in order to estimate the sediment trapping efficiency of VFS in agricultural fields for an effective watershed management in Korea.

Keywords

References

  1. Borrelli, P., D. A. Robinson, L. R. Fleischer, E. Lugato, C. Ballabio, C. Alewell, K. Meusburger, S. Modugno, B. Schutt, and V. Ferro, 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8(1): 1-13. doi:10.1038/s41467-017-02142-7.
  2. Bosch, N. S., J. D. Allan, J. P. Selegean, and D. Scavia, 2013. Scenario-testing of agricultural best management practices in Lake Erie Watersheds. Journal of Great Lakes Research 39(3): 429-436. doi:10.1016/j.jglr.2013.06.004.
  3. Choi, K. S., and J. R. Jang, 2014. Selection of appropriate plant species of VFS (Vegetative Filter Strip) for reducing NPS pollution of uplands. Journal of Korea Water Resources Association 47(10): 913-983 (in Korean). doi:10.3741/JKWRA.2014.47.10.973.
  4. Golkowska, K., B. Rugani, D. Koster, and C. Van Oers, 2016. Environmental and economic assessment of biomass sourcing from extensively cultivated buffer strips along water bodies. Environmental Science & Policy 57(1): 31-39. doi:10.1016/j.envsci.2015.11.014.
  5. Han, J. H., Y. Park, D. Kum, Y. G. Jung, G. C. Jung, K. S. Kim, and K. J. Lim, 2015. Modification of sediment trapping efficiency equation of VFS in SWAT considering the characteristics of the agricultural land in Korea. Journal of Korean Society on Water Environment 31(5): 482-490 (in Korean). doi:10.15681/KSWE.2015.31.5.482.
  6. Hastie, T., J. Taylor, R. Tibshirani, and G. Walther, 2007. Forward stagewise regression and the monotone lasso. Electronic Journal of Statistics 1: 1-29. doi:10.1214/07-EJS004.
  7. Hoerl, A. E., and R. W. Kennard, 2000. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42(1): 80-86. doi:10.1080/00401706.2000.10485983.
  8. Keesstra, S., J. Nunes, A. Novara, D. Finger, D. Avelar, Z. Kalantari, and A. Cerda, 2018. The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of The Total Environment 610: 997-1009. doi:10.1016/j.scitotenv.2017.08.077.
  9. Khatavkar, P., and L. W. Mays, 2017. Optimization models for the design of vegetative filter strips for stormwater runoff and sediment control. Water Resources Management 31(9): 2545-2560. doi:10.1007/s11269-016-1552-y.
  10. Kim, S. B., 2016. Sentiment dictionary and polarity classification of blog review by using elastic net. Master. Seoul, Korea: Dongguk University (in Korean).
  11. Kyung, M. J., 2014. Comparison of laplace and double pareto penalty: LASSO and elastic net. Korean Journal of Applied Statistics 27(6): 975-989 (in Korean). doi:10.5351/KJAS.2014.27.6.975.
  12. Munoz-Carpena, R., J. E. Parsonsb, and J. W. Gilliam, 1999. Modeling hydrology and sediment transport in vegetative filter strips. Journal of Hydrology 214(1-4): 111-129. doi:10.1016/S0022-1694(98)00272-8.
  13. Munoz-Carpena, R., and J. E. Parsons, 2014. Vegetative filter strips modeling system: Model Document and User's Manual Version 6. Gainesville, FL, USA: Press of University of Florida
  14. Park, C. Y., 2013. Simple principal component analysis using Lasso. Journal of the Korean data & Information Science Society 24(3): 533-541 (in Korean). https://doi.org/10.7465/jkdi.2013.24.3.533
  15. Park, Y. S. and G. W. Hyun, 2014. Optimization of vegetative filter strip using VFSMOD-w model and Genetic-Algorithm. Journal of Korean Society on Water Environment 30(2): 159-165 (in Korean). doi:10.15681/KSWE.2014.30.2.159
  16. Park, Y. S., J. G. Kim, N. W. Kim, K. S. Kim, J. D. Choi, and K. J. Lim, 2007. Analysis of sediment yields at watershed scale using area/slope-based sediment delivery ratio in SATEEC. Journal of Korean Society on Water Environment 23(5): 650-658 (in Korean).
  17. Park, Y., J. Kim, N. Kim, J. Park, W. S. Jang, J. Choi, and K. J. Lim, 2008. Improvement of sediment trapping efficiency module in SWAT using VFSMOD-W model. Journal of Korean Society on Water Environment 24(4): 473-479 (in Korean).
  18. Robert, T., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B Statistical Methodology 58(1): 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
  19. Schmitt, T. J., M. G. Dosskey, and K. D. Hoagland, 1999. Filter strip performance and processes for different vegetation, widths, and contaminants. Journal of Environmental Quality 28(5): 1479-1489. doi:10.2134/jeq1999.00472425002800050013x.
  20. Son, E. H., and D. B. Park, 2012. Forecasting of Yeongdeok tourist by seasonal ARIMA model. Journal of Agricultural Extension & Community Development 19(2): 301-320 (in Korean). doi:10.12653/jecd.2012.19.2.301.
  21. White, M. J., and J. G. Arnold, 2009. Development of a simplistic vegetative filter strip model for sediment and nutrient retention at the field scale. Hydrological Processes 23(11): 1602-1616. doi:10.1002/hyp.7291.
  22. Woodward, D. E., R. H. Hawkins, R. Jiang, Jr, A. T. Hjelmfelt, J. A. Van Mullem, and Q. D. Quan, 2003. Runoff curve number method: examination of the initial abstraction ratio. In World Water & Environmental Resources Congress 2003: 1-10. doi:10.1061/40685(2003)308.
  23. Zhang, B., C. He, M. Burnham, and L. Zhang, 2016. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Science of the Total Environment 539: 436-449. doi:10.1016/j.scitotenv.2015.08.132.
  24. Zou, H., and T. Hastie, 2005. Regularization and variable selection via the Elastic Net. Journal of the Royal Statistical Society: Series B Statistical Methodology 67(2): 301-320. doi:10.1111/j.1467-9868.2005.00503.x.