• Title/Summary/Keyword: elastic waves

Search Result 414, Processing Time 0.023 seconds

Resonances of Unconstrained Compressive, Shear and Flexural Waves in Free-Free Cylinder Specimens (자유단 공시체에 있어서 압축파, 전단파, 휨파의 공진특성)

  • Park, Byoung-Sun;Joh, Sung-Ho;Lee, Sang-Heon;Kang, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.582-589
    • /
    • 2006
  • Shear wane velocity is important property for grasping the dynamic characteristics of material. It is has been used in various fields such as non-destructive testings of structures, seismic analysis of geotechnical structures and maintenance of concrete structure, and etc. Usually, shear wave velocities of rock cores and concrete cylinders are determined by free-free resonance tests, Shear wave measurement in free-free resonance tests is not straightforward, as compared with rod wave and flexural wane measurements. In This study, a new technique using resonance features of flexural and shear waves were proposed in which the nodal points for the fundamental mode of flexural waves were employed to generate and measure the shear waves with the flexural waves minimized. The real measurements for aluminum cylinders proved validity and reliability of the proposed algorithm. In addition to the proposed algorithm, the effects of material properties on elastic-wave velocities in resonance measurements were also studied. In summary, a new framework of the resonance measurements for shear-wave velocity determination was established, based on the results of this thesis.

  • PDF

Infinite Elements for Soil-Structure Interaction Analysis (지반-구조물의 상호작용 해석을 위한 무한요소)

  • 양신추;윤정방;이인모
    • Computational Structural Engineering
    • /
    • v.2 no.3
    • /
    • pp.85-95
    • /
    • 1989
  • This paper presents a study of soil-structure interaction problems using infinite elements. The infinite elements are formulated for homogeneous and layered soil media, based on approximate expressions for three components of propagating waves, namely the Rayleigh, compressive and shear waves. The integration scheme which was proposed for problems with single wave component by waves. The integration scheme which was proposed for problems with single wave component by Zenkiewicz is expanded to the multi-waves problem. Verifications are carried out on rigid circular footings which are placed on and embedded in elastic half space. Numerical analysis is performed for a containment structure of a nuclear power plant subjected to a horizontal seismic excitation.

  • PDF

Development of a Cardiovascular Simulator with Cardiovascular Characteristics (혈관계의 특성이 반영된 심혈관계 시뮬레이터의 개발)

  • Lee, Ju-Yeon;Shin, Sang-Hoon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.3
    • /
    • pp.33-40
    • /
    • 2012
  • Objectives: Existing cardiovascular simulators are used to evaluate artificial organs such as artificial hearts, prosthetic valves, and artificial blood vessels, and pulses are typically triggered using artificial hearts. However, the forms of pulse waves vary according to the location of arteries, and for precise assessment of artificial blood vessels, the development of simulators that generate diverse pressure pulse waves is necessary. This study developed a novel cardiovascular simulator that generates different forms of pulse waves. Methods: This simulator consists of a stepping motor, a slider-crank mechanism that transforms the rotation movement of a motor into the straight-line motion of a piston, a piston that generates pulsatile flows, a water tank that supplies fluids, an elastic tube made of silicon, and a device that adjusts the terminal resistance of fluids. Results & Conclusion: This study examined motor rotation and its operation under conditions similar to the physiological conditions of the heart. The simulator developed in this study produced diverse forms of waves, and the generated pressure waves well satisfied physiological conditions.

Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature

  • Abo-Dahab, S.M.;Othman, Mohamed I.A.;Alsebaey, Ohoud N.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, we established the generalized thermoelasticity phenomenon in an isotropic elastic medium considering the electromagnetic field, rotation and two-temperature. Three theories of generalized thermoelasticity have been applied: Lord-Shulman (one relaxation time), Green-Lindsay (two relaxation times), as well as the coupled theory. We discussed some particular cases in the context of the wave propagation phenomenon in thermoelasticity. From solving the fundamental equations, we arrived that there are three waves: P-, T- and SV-waves that we calculated their velocities. The boundary conditions for mechanical stress and Maxwell's stress and thermal insulated or isothermal have been applied to determine the amplitudes ratios (reflection coefficients) for P-, T - and SV waves. Some utilitarian aspects are obtained from the reflection coefficients, presented graphically, and the new conclusions have been presented. Comparisons are made for the results predicted by different theories (CT, LS, GL) in the absence and presence of the electro-magnetic field, rotation, as well as two-temperature on the reflection of generalized thermoelastic waves. The results obtained concluded that the external parameters as the angle of incidence, electromagnetic field, rotation as well as the theories parameters have strong effect on the phenomenon.

Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

  • Rajneesh Kumar;Nidhi Sharma;Supriya Chopra;Anil K. Vashishth
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.123-146
    • /
    • 2023
  • In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

Propagation behaviors of guided waves in graphene platelet reinforced metal foam plates

  • Wubin Shan;Hao Zhong;Nannan Zhang;Guilin She
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.637-646
    • /
    • 2023
  • At present, the research on wave propagation in graphene platelet reinforced composite plates focuses on the propagation behavior of bulk waves, in which the effect of boundary condition is ignored, there is no literature report on propagation behaviors of guided waves in graphene platelet reinforced metal foams (GPLRMF) plates. In fact, wave propagation is affected by boundary conditions, so it is necessary to study the propagation characteristics of guided waves. The aim of this paper is to solve this problem. The effective performance of the material was calculated using the mixing law. Equations of motion of GPLRMF plate is derived by using Hamilton's principle. Then, the eigenvalue method is used to obtain the expressions of bending wave, shear wave and longitudinal wave, and the degradation verification is carried out. Finally, the effects of graphene platelets (GPLs) volume fraction, elastic foundation, porosity coefficient, GPLs distribution types and porosity distribution types on the dispersion relations are studied. We find that these factors play an important role in the propagation characteristics and phase velocity of guided waves.

Measurement of Axisymmetric-Wave Speed in a Pipe by Using Piezoelectric Cylindrical Transducers (원통형 압전 변환기에 의한 관 내 축대칭 파동 속도 측정)

  • Hwang, Kyo-Kwang;Kim, Jin-Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1E
    • /
    • pp.19-23
    • /
    • 2004
  • This paper presents an experimental technique to generate and detect axisymmetric longitudinal waves in a pipe by using piezoelectric cylindrical transducers. Radial pulses transmitted by one transducer have propagated in two opposite directions along the pipe, and other two transducers have received the propagating waves. The difference of the transit times measured for the waves in two paths of known distance difference has yielded the phase speed of the wave propagation. Wave speed has been measured in an empty pipe and in a water-filled pipe.

Friction-Based and Acoustically-Levitated Object Transport Using Ultrasonic Vibration (초음파 진동을 이용한 마찰 및 음향부상에 의한 물체의 수송)

  • Byoung-Gook Loh;Yong-Kuk Park
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.590-599
    • /
    • 2003
  • In this study. object transport method based on ultrasonic flexural vibration is presented. Ultrasonic vibration generates ultrasonic traveling waves on the surface of elastic medium. Objects are transported through the interaction with traveling waves propagating in medium. Two types of transport methods are studied: frictional drive and acoustic levitation. With frictional drive, objects are transported in contact with the beam in the opposite direction of wave propagation whereas with acoustic levitation, objects are acoustically levitated above the beam surface and transported in the wave propagation direction. Transport characteristics are experimentally investigated using objects of different shapes and sizes. The transition from acoustic levitation mode to frictional drive mode is also examined. and it is found to occur when the ratio of mass to area of an object exceeds the threshold ratio of mass to area. It is envisaged that this feasibility study will serve as a stepping-stone for ultrasonic vibration to become an effective industrial material handling device in the future.

Scattering of Surface Waves in Anisotropic Media for Applications in Wave Barriers and Non-Destructive Evaluation (방진구조물 및 비파괴 응력파 탐상의 응용을 위한 비등방성 재료의 표면파 산란에 관한 연구)

  • 이종세
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.77-85
    • /
    • 1998
  • Propagation of elastic surface waves in anisotropic media is considered in this study. An analytical technique is proposed to study the scattering of surface waves at the interface between two anisotropic quarter-spaces. The Green's function technique is used to derive a system of equations which can determine the scattering coefficients at the interface. A numerical study is carried out and the trade-offs between the material anisotropy and inhomogeneity are studied.

  • PDF

Motion Analysis of a Very Large Floating Structure in Irregular Waves (불규칙파 중 초대형 부유식 해양 구조물에 대한 운동 해석)

  • 신현경;이호영;임춘규;신현수;박인규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.63-68
    • /
    • 2000
  • A very large floating structure has rather small motion characteristics as to the whole body, while the motion at end part of such structure becomes largest due to the elastic motion of the structure. This paper presents on the theoretical result on the relative motion characteristics and green water phenomena of VLFS in waves This phenomena affect not only to strength of the structure but also the determination of depth of structure. To predict motion responses of structure in regular waves, the source-dipole distribution method and F.E.M is used By irregular wave results, the probability of occurrence of green water and response of the structure were calculated.

  • PDF