• Title/Summary/Keyword: elastic wave scattering

Search Result 51, Processing Time 0.024 seconds

A Study on Development of Automatically Recognizable System in Types of Welding Flaws by Neural Network (신경회로망에 의한 용접 결함 종류의 정량적인 자동인식 시스템 개발에 관한 연구)

  • 김재열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 1997
  • A neural network approach has been developed to determine the depth of a surface breaking crack in a steel plate from ultrasonic backscattering data. The network is trained by the use of feedforward three-layered network together with a back-scattering algorithm for error correction. The signal used for crack insonification is a mode converted 70$^{\circ}$transverse wave. A numerical analysis of back scattered field is carried out based on elastic wave theory, by the use of the boundary element method. The numerical data are calibrated by comparison with experimental data. The numerical analysis provides synthetic data for the training of the network. The training data have been calculated for cracks with specified increments of the crack depth. The performance of the network has been tested on other synthetic data and experimental data which are different from the training data.

  • PDF

Development of an Approximate Model for Ultrasonic Evaluation of Small Surface Fatigue Cracks (작은 피로 균열의 초음파 평가를 위한 근사 모델의 개발)

  • Kang, Kae-Myung;Kim, Jin-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.46-50
    • /
    • 2000
  • A theoretical model for the evaluation of small surface fatigue crack initiated from a pit-type surface flaw is presented. The low frequency scattering model is developed based on the reciprocity principle for the elastic wave scattering. The effect of the flaw on the surface wave reflection from the crack is taken into account approximately by means of the stress intensity factor of cracks on a through thickness hole. The reflection coefficient of surface wave is derived for the prediction of small surface crack depth. Calculated results for pits with different sizes are illustrated.

  • PDF

A Study on Scattered Field of Ultrasonic Wave Using the Boundary Element Method (경계요소법을 이용한 초음파 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.130-137
    • /
    • 2000
  • Ultrasonic technique which is one of the most common and reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal scattered from internal defects. Therefore, the numerical analysis of the ultrasonic scattered field is absolutely necessary for the accurate and quantitative estimation of internal defects. Various modeling techniques now play an important role in nondestructive evaluation and have been employed to solve elastic wave scattering problems. Because the elastodynamic boundary element method is useful to analyze the scattered field in infinite media. it has been used to calculate the ultrasonic wavefields scattered from internal defects. In this study, a review of the boundary element method used for elastic wave scattering problems is presented and, as examples of the boundary element method, the scattered fields due to a circular cavity subjected to incident SH-wave and due to a surface-breaking crack subjected to incident Rayleigh wave are illustrated.

  • PDF

Pseudo 3D FEM analysis for wave passage effect on the response spectrum of a building built on soft soil layer

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1241-1254
    • /
    • 2015
  • Spatially variable ground motions can be significant on the seismic response of a structure due to the incoherency of the incident wave. Incoherence of the incident wave is resulted from wave passage and wave scattering. In this study, wave passage effect on the response spectrum of a building structure built on a soft soil layer was investigated utilizing a finite element program of P3DASS (Pseudo 3-dimensional Dynamic Analysis of a Structure-soil System). P3DASS was developed for the axisymmetric problem in the cylindrical coordinate, but it is modified to apply anti-symmetric input earthquake motions. Study results were compared with the experimental results to verify the reliability of P3DASS program for the shear wave velocity of 250 m/s and the apparent shear wave velocities of 2000-3500 m/s. Studied transfer functions of input motions between surface mat foundation and free ground surface were well-agreed to the experimental ones with a small difference in all frequency ranges, showing some reductions of the transfer function in the high frequency range. Also wave passage effect on the elastic response spectrum reduced the elastic seismic response of a SDOF system somewhat in the short period range.

Propagation of elastic waves in thermally affected embedded carbon-nanotube-reinforced composite beams via various shear deformation plate theories

  • Ebrahimi, Farzad;Rostami, Pooya
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.495-504
    • /
    • 2018
  • The current study is dedicated to study the thermal effects of wave propagation in beams, reinforced by carbon nanotubes (CNT). Beams, made up of carbon nanotube reinforced composite (CNTRC) are the future materials in various high tech industries. Herein a Winkler elastic foundation is assumed in order to make the model more realistic. Mostly, CNTs are pervaded in cross section of beam, in various models. So, it is tried to use four of the most profitable reconstructions. The homogenization of elastic and thermal properties such as density, Yong's module, Poisson's ratio and shear module of CNTRC beam, had been done by the demotic rule of mixture to homogenize, which gives appropriate traits in such settlements. To make this investigation, a perfect one, various shear deformation theories had been utilized to show the applicability of this theories, in contrast to their theoretical face. The reigning equation had been derived by extended Hamilton principle and the culminant equation solved analytically by scattering relations for propagation of wave in solid bodies. Results had been verified by preceding studies. It is anticipated that current results can be applicable in future studies.

Numerical Modeling of Elastic Wave Scattering in an Isotropic Medium Containing an Orthotropic Inclusion (직교이방성 함유체를 포함하는 등방성 기지에서의 탄성파 산란 수치해석 모델)

  • Lee, Jung-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.69-79
    • /
    • 2001
  • A volume integral equation method(VIEM) is applied for the effective analysis of elastic wave scattering problems in unbounded solids containing general anisotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only the Green's function for the unbounded isotropic matrix is Involved In their formulation for the analysis. nis new method can also be applied to general two-dimensional elastodynamic problems with arbitrary shapes and number of anisotropic inclusions. Through the analysis of plane elastodynamic problems in unbounded isotropic matrix with an orthotropic inclusion, it is established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing general anisotropic inclusions.

  • PDF

Modeling of Elastodynamic Problems in Finite Solid Media (유한 고체내 탄성동역학 문제의 모델링)

  • Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.138-149
    • /
    • 2000
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi mode conversion of guided wave scattering problems. Time dependent wave forms are obtained through the inverse Fourier transformation of the numerical solutions in the frequency domain. 3D BEM program development is underway to model more practical ultrasonic wave signals. Some encouraging numerical results have recently been obtained in comparison with the analytical solutions for wave propagation in a bar subjected to time harmonic longitudinal excitation. It is expected that the presented modeling techniques for elastic wave propagation and scattering can be applied to establish quantitative nondestructive evaluation techniques in various ways.

  • PDF

Sound Propagation in 5CB Liquid Crystals Homogeneously Confined in a Planar Cell

  • Ko, Jae-Hyeon;Hwang, Yoon-Hwae;Kim, Jong-Hyun
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.72-75
    • /
    • 2009
  • The Brillouin spectrum of 4'-n-pentyl-4-cyano-biphenyl (5CB) liquid crystals homogeneously confined in a planar liquid crystal (LC) cell was measured using a 6-pass tandem Fabry-Perot interferometer. By adopting a special right-angle scattering geometry, the sound velocity of 5CB was estimated from the Brillouin shift without knowing the refractive index. The sound velocity of the longitudinal wave propagating along the direction of the directors aligned parallel to the glass plates of the LC cell was 1784${\pm}$7 m/s at 300 K. The attenuation coefficient $\alpha$ was estimated to be approximately $1.9{\times}10^6m^{-1}$, which is about twice as large as that of the longitudinal sound wave propagating along the direction perpendicular to the directors. The present method may be very useful in the evaluation of the elastic properties of the materials used in display devices, whose refractive indices are not known.

Analysis and Simulation of Ultrasonic Wave Propagation and Scattering in Unidirectional Fiber Composites (단일방향 섬유 복합재료 내의 초음파 전파 및 산란 현상의 해석과 시뮬레이션)

  • Lee, Choon-Jae;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.269-276
    • /
    • 2001
  • Ultrasonic testing of composite materials is much more difficult than that of isotropic materials, because of the beam skew phenomenon caused by their elastic anisotropy. An established analytical method exists for elastic wave propagation in anisotropic media as a result of previous research efforts. Yet, due to the complexity of the analytical method, solution of real problems must resort to the numerical method. In this work, analytical solutions have first been obtained for the wavefield due to a point source in a unidirectional fiber-reinforced composite, which may be modeled as transversely isotropic. Then, the corresponding numerical solutions have been obtained using the mass-spring lattice model(MSLM). The two solutions have agreed well with each other. Other problems such as reflection from free boundaries and scattering from cracks have also been solved numerically, and the results have been investigated from the viewpoint of wave mechanics. The numerical model whose validity has been confirmed by this work will be of great use in simulating ultrasonic testing of composite materials.

  • PDF

Analysis of Multi-Mode Reflection and Transmission Coefficients of a Lamb Wave Across a Rectangular Notch (사각형 노치에 대한 램파의 다중 모드 반사와 투과 계수 해석)

  • Kim, Byung-Soo;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.129-139
    • /
    • 2008
  • The purpose of the present work is to derive the reflection and transmission coefficients of $S_0\;and\;A_0$ mode Lamb waves in relation to the geometry of a rectangular notch when the waves propagate across the notch in an elastic plate. Firstly, the excitable modes of the Lamb wave were analyzed with respect to the plate thickness. The scattering phenomena were divided into three independent processes according to the boundary shape of the notch and the direction of the wave propagation. Linear equations for each process were derived with corresponding free or continuous boundary conditions to analyze the scattered waves. By the rule of linear superposition, the waves scattered at each process were summed for each mode. Then the steady-state reflection and transmission coefficients of the scattered waves were determined so that the difference of energy flux between the incident and the scattered waves would remain within 4%.