• Title/Summary/Keyword: elastic tool

Search Result 266, Processing Time 0.025 seconds

A Study on the Nucleation of Fretting Fatigue Cracks at the Heterogeneity Material (이종재료에서 프레팅 피로 균열의 생성에 관한 연구)

  • Goh Jun Bin;Goh Chung Hyun;Lee Kee Seok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.103-109
    • /
    • 2005
  • Since fretting fatigue damage accumulation occurs over relatively small volumes, the role of the microstructure is quite significant in fretting fatigue analysis. The heterogeneity of discrete grains and their crystallographic orientation can be accounted for using continuum crystallographic cyclic plasticity models. Such a constitutive law used in parametric studies of contact conditions may ultimately result in more thorough understanding of realistic fretting fatigue processes. The primary focus of this study is to explore the influence of microstructure as well as the magnitude of the normal force and tangential force amplitude during the fretting fatigue process. Fretting maps representing cyclic plastic strain behaviors are also developed to shed light on the cyclic deformation mechanisms.

Mathematical Modeling for the Depth of Deformed Layer in Machining (가공변질층 깊이의 수학적 모델링)

  • 박영우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.247-250
    • /
    • 1995
  • The development and empirical validation of a mathematical model for predicting the depth of deformed layer in a machined surface are presented. The main assumption for develioping this model is that there is a linear relationship between plastic strain and the depth to which it extends. The model relates the work required to shear the workpice material to the work needed to compress the workpiece material ahead of the cutting tool. The results show that the percent difference between the calculated and the measured depth of deformed layer ranges form 4 percent to 19 percent. An improvement of the model is suggested through application of actual distribution data of plastic strain.

  • PDF

Load analysis of an offshore monopile wind turbine using fully-coupled simulation (Fully-coupled 시뮬레이션을 이용한 해상 monopile 풍력 발전기의 응력해석)

  • Shi, Wei;Park, Hyun-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.480-485
    • /
    • 2009
  • Offshore wind energy is gaining more attention. Ensuring proper design of offshore wind turbines and wind farms require knowledge of the external conditions in which the turbines and associated facilities are to operate. In this work, a three-bladed 5MW upwind wind turbine, which is supported by the monopile foundation, is studied by use of fully coupled aero-hydro-servo-elastic commercial simulation tool, 'GH-Bladed'$^{(R)}$. Specification of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Design Load case 5.2 is investigated in this work. The steady state power curve and power production loads are evaluated. Comparison between different codes is made.

  • PDF

The Selection of the Optimal Gator Wavelet Shape Factor Using the Shannon Entropy Concept (Shannon 엔트로피 개념을 이용한 가보 웨이블렛 최적 형상의 선정)

  • Hong, Jin-Chul;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.176-181
    • /
    • 2002
  • The continuous Gabor wavelet transform (GWT) has been utilized as a useful time-frequency analysis tool to identify the rapidly-varying characteristics of some wave signals. In the application of GWT, it is important to select the Gabor wavelet with the optimal shape factor by which the time-frequency distribution of a signal can be accurately estimated. To find the signal-dependent optimal Gabor wavelet shape factor, the notion of the Shannon entropy which mesures the extent of signal energy concentration in the time-frequency plane is employed. To verify the validity of the present entropy-based scheme, we have applied it to the time-frequency analysis of a set of elastic bending wave signals generated by an impact in a solid cylinder.

  • PDF

A Variable Demand Traffic Assignment Model Based on Stable Dynamics (안정동력학에 의한 가변수요 통행배정모형)

  • Park, Koo-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.1
    • /
    • pp.61-83
    • /
    • 2009
  • This study developed a variable demand traffic assignment model by stable dynamics. Stable dynamics, suggested by Nesterov and do Palma[19], is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with the user equilibrium model, which is based on the arc travel time function in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on congestion. It is therefore expected to be a useful analysis tool for transportation planners. In this study, we generalize the stable dynamics into the model with variable demands. We suggest a three stage optimization model. In the first stage, we introduce critical travel times and dummy links and determine variable demands and link flows by applying an optimization problem to an extended network with the dummy links. Then we determine link travel times and path flows in the following stages. We present a numerical example of the application of the model to a given network.

Advanced inelastic static (pushover) analysis for earthquake applications

  • Elnashai, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.51-69
    • /
    • 2001
  • Whereas the potential of static inelastic analysis methods is recognised in earthquake design and assessment, especially in contrast with elastic analysis under scaled forces, they have inherent shortcomings. In this paper, critical issues in the application of inelastic static (pushover) analysis are discussed and their effect on the obtained results appraised. Areas of possible developments that would render the method more applicable to the prediction of dynamic response are explored. New developments towards a fully adaptive pushover method accounting for spread of inelasticity, geometric nonlinearity, full multi-modal, spectral amplification and period elongation, within a framework of fibre modelling of materials, are discussed and preliminary results are given. These developments lead to static analysis results that are closer than ever to inelastic time-history analysis. It is concluded that there is great scope for improvements of this simple and powerful technique that would increase confidence in its employment as the primary tool for seismic analysis in practice.

Noninvasive Detection of Radial Pulse Wave by Fiber-Optic Transducer (광파이버 트랜스듀서에 의한 맥파의 무침습적 검출)

  • 박승환;정동명
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.229-236
    • /
    • 1989
  • This paper describes an idea of design and construction for a radial pulse wave detector, In acquiring arterial pulse signal noninvasively, a new combinational fiber-optic transducer was used which has a detecting part and a sensing part. The mechanism of detecting part is composed of special form of structure that can detect changing pulses in contact with skin, and transmits arterial wall movements to the sensing part. It consists of elastic reflector and optical fibers, which are arranged in a fiber pair. Then, the intensity of the reflected light will be proportional to the displacement changed by inclined reflector. Using this transducer, it expected to make a clinically useful tool for arterial pulse wave diagnosis, especially on the application of "MACK- CHIN" in the field of Korean traditional medicine, since : his transducer has a simple structure and has an easy and clear signal acquisition method.on method.

  • PDF

Effect of Fiber on the Acoustic Emission of High Performance Fiber-Reinforced Cement Composite (섬유종류에 따른 고인성 시멘트 복합체의 음향방출특성)

  • Kim, Yun-Soo;Jeon, Esther;Kim, Sun-Woo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.342-345
    • /
    • 2006
  • The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of HPFRCC(High performance fiber-reinforced cementitious composite). Acoustic emission(AE) method was used to evaluate the characteristics of fracture process and the micro-failure mechanism of HPFRCC. For these purposes, three kinds of fibers were used : PP(Polypropylene), PE(Polyethylene), SC(Steel cord). In this study, the AE characteristics of HPFRCC with different fiber type(PE.15, PP2.0, SC0.75+PE0.75) distributions under four-point-bending were studied. The result show that the AE technique is a valuable tool to study the failure mechanism of HPFRCC.

  • PDF

Material Characterization of Lock Plate Using Guided Wave (유도 초음파를 이용한 락 플레이트 물성 평가)

  • Lee, Jae-Sun;Cho, Youn-Ho;Jeong, Kyoung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.373-379
    • /
    • 2009
  • Presented in this paper is a new experimental technique to measure material properties of lock plate of gas turbine plants by using ultrasonic guided wave. In comparison with the mechanical destructive testings, material characterization of the Inconel x-750 was nondestructively carried out in a more efficient manner to discriminate the change in elastic moduli and the poisson's ratio attributed to the variation of heat treatment condition. The proposed technique shows a satisfactory feasibility via the comparative experiments with the imported lock plate specimens. It is also expected that the guided wave technique can cover a longer and wider range as a new cost-&-time-saving inspection tool due to the interaction with a greater part of specimen, compared to a conventional local point-by-point scheme.

Shape Optimization for Opening Mode in Fracture Mechanics (열림 모드에 대한 형상 최적화)

  • 한석영;송시엽
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.40-45
    • /
    • 2001
  • The relationship between structural geometry and number of life cycles to failure is investigated to improve the fatigue life of structural components. The linear elastic fracture mechanics(LEFM) approach is integrated with shape optimal design methodology. The primary objective of this study is to decide an optimal shape for enhancing the life of the structure. The results from LEFM analyses are used in the fatigue model to predict the life of the structure before failure is occurred. The shape of the structure is optimized by using the growth strain method. Relevant issues such as problem formulation, finite element modeling are explained. Three design examples are solved, and the results show that, with proper shape changes, the life of structural systems subjected to fatigue loads can be enhanced significantly.

  • PDF