• Title/Summary/Keyword: elastic shear modulus

Search Result 299, Processing Time 0.02 seconds

Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul Soo;Hwang, Seon Keun;Choi, Chan Yong;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.71-79
    • /
    • 2009
  • This study is to develope the resilient modulus prediction model, which is the function of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered granite soil, and crushed-rock soil mixture. The model consists of the maximum Young's modulus and nonlinear values for higher strain, analogous to dynamic shear modulus. The maximum value is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea, was evaluated using a 3-D elastic multilayer computer program (GEOTRACK). The results were compared with measured elastic vertical displacement during the passages of freight and passenger trains at two locations, whose sub-ballasts were crushed stone and weathered granite soil, respectively. The calculated vertical displacements of the sub-ballasts are within the order of 0.6mm, and agree well with measured values. The prediction models are thus concluded to work properly in the preliminary investigation.

Shear Wave Velocity Estimation of Railway Roadbed Using Dynamic Cone Penetration Index (동적 콘 관입지수를 이용한 철도노반의 전단파속도 추정)

  • Hong, Won-Taek;Byun, Yong-Hoon;Choi, Chan Yong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.25-31
    • /
    • 2015
  • Elastic behavior of the railway roadbed which supports the repeating dynamic loads of the train is mainly affected by the shear modulus of the upper roadbed. Therefore, shear wave velocity estimation of the uniformly compacted roadbed can be used to estimate the elastic behavior of the railway roadbed. The objective of this study is to suggest the relationship between the dynamic cone penetration index (DCPI) and the shear wave velocity ($V_s$) of the upper roadbed in order to estimate the shear wave velocity by using the dynamic cone penetration test (DCPT). To ensure the reliability of the relationship, the dynamic cone penetration test and the measurement of the shear wave velocity are conducted on the constructed upper roadbed. As a method for measurement of the shear wave velocity, cross hole is used and then the dynamic cone penetration test is performed at a center point between the source and the receiver of the cross hole. As a result of the correlation of the dynamic cone penetration index and the shear wave velocity at the same depths, the shear wave velocity is estimated as a form of involution of the dynamic cone penetration index with a determinant coefficient above 0.8. The result of this study can be used to estimate both the shear wave velocity and the strength of the railway roadbed using the dynamic cone penetrometer.

Prediction of effective stiffness on short fiber reinforced composite materials (단섬유 복합재료의 탄성계수 예측)

  • 임태원;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.611-617
    • /
    • 1991
  • Effective stiffness of short fiber composite with a three-dimensional random orientation of fibers is derived theoretically and compared with available experimental data. The laminate analogy and transformed laminate analogy are used for modulus prediction of 2-D and 3-D random composites, respectively. The effective stiffness of random oriented fiber composite can be expressed in terms of longitudinal and transverse stiffnesses of unidirectional composites. The result of transformed laminate analogy is more accurate than other approaches such as, Christensen-Waals equational and Lavengood-Goettler equation, etc. Also the effective properties of random oriented fiber composite can be expressed in terms of fiber and matrix properties such as elastic modulus, shear modulus and Poisson's ratio.

Characterizing the geotechnical properties of natural, Israeli, partially cemented sands

  • Frydman, Sam
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.323-337
    • /
    • 2011
  • Israel's coastal region consists, mainly, of Pleistocene and Holocene sands with varying degrees of calcareous cementation, known locally as "kurkar". Previous studies of these materials emphasized the difficulty in their geotechnical characterization, due to their extreme variability. Consequently, it is difficult to estimate construction stability, displacements and deformations on, or within these soils. It is suggested that SPT and Menard pressuremeter tests may be used to characterize the properties of these materials. Values of elastic modulus obtained from pressuremeter tests may be used for displacement analyses at different strain levels, while accounting for the geometric dimensions (length/diameter ratio) of the test probe. A relationship was obtained between pressuremeter modulus and SPT blow count, consistent with published data for footing settlements on granular soils. Cohesion values, for a known friction angle, are estimated, by comparing field pressuremeter curves to curves from numerical (finite element or finite difference) analyses. The material analyzed in the paper is shown to be strain-softening, with the initial cohesion degrading to zero on development of plastic shear strains.

Study on Measuring the Acoustic Velocity Propagating Through the Polymeric Mterials in the Low Frequency Ranges (저주파 영역에서 고분자 재료의 음속 측정에 관한 연구)

  • 김창현;조국영;박정기
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.8
    • /
    • pp.58-63
    • /
    • 1998
  • 저주파 영역의 음파의 투과속도 측정에 기존의 펄스에코방법이나 투과법 (transmission method)가 이용되는 경우, 탐촉자 및 시편의 크기, 시편과 탐촉자 사이의 거 리가 사용하는 음파의 주파수가 작아질수록 대형화되어 측정에 어려움을 나타내게 된다. 따 라서 본 연구에서는 고분자 재료의 음향특성을 평가할 수 있는 간단한 방법으로써 고분자 재료의 주파수에 따른 동적 탄성률(dynamic modulus)을 시간-온도 중첩의 원리를 이용하여 측정하고, 고분자 내에서 저주파 영역의 음파의 전달 속도와 주파수에 따른 탄성율(elastic modulus), 전단 탄성률(shear modulus) 그리고 밀도의 관계식으로부터 음속을 측정하였다. 실험결과 주파수가 증가함에 따라 고분자 재료의 동적 탄성률이 증가하였으며, 음속도 주파 수에 따라 증가하였다. 본 연구에서 사용한 폴리우레탄 재료의 음속은 100Hz∼10kHz영역에 서 약1500m/sec에서 3000m/sec를 나타내었다.

  • PDF

Topological Analysis on the Modulus and Network Structure of Miscible Polymer Blends

  • 손정모;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • A topological theory is introduced to extend Tsenoglou's theory to polymer blends having temporary and permanent networks composed of multicomponent polymers which have miscible and flexible chains. The topological theory may estimate the values of free elastic energy, the molecular weight between entanglements, and the equilibrium shear moduli, and it may establish more correctly the topological relations among these physical quantities. Through such introduction of the topological theory, there can be topologically analyzed the mixing law for the rubbery plateau modulus of a fluid polymer blend, and there can be considered the topological relationship to the equilibrium modulus of an interpenetrating polymer network containing trapped entanglements and dangling segments. The theoretically predictive values are compared and show good agreement with the experimental data for several miscible polymer blends.

Equivalent Mechanical and Thermal Properties of Multiphase Superconducting Coil Using Finite Element Analysis (유한요소해석을 이용한 다상의 초전도 코일에 대한 기계적 열적 등가 물성)

  • Sa, J.W.;Her, N.I.;Choi, C.H.;Oh, Y.K.;Cho, S.;Do, C.J.;Kwon, M.;Lee, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.975-980
    • /
    • 2001
  • Like composite material. the coil winding pack of the KSTAR (Korea Superconducting Tokamak Advanced Research) consist of multiphase element such as metallic jacket material for protecting superconducting cable, vacuum pressurized imprepregnated (VPI) insulation, and corner roving filler. For jacket material, four CS (Central Solenoid) Coils, $5^{th}$ PF (Poloidal Field) Coil, and TF (Toroidal Field Coil) use Incoloy 908 and $6-7^{th}$ PF coil, Cold worked 316LN. In order to analyze the global behavior of large coil support structure with coil winding pack, it is required to replace the winding pack to monolithic matter with the equivalent mechanical properties, i.e. Young's moduli, shear moduli due to constraint of total nodes number and element numbers. In this study, Equivalent Young's moduli, shear moduli, Poisson's ratio, and thermal expansion coefficient were calculated for all coil winding pack using Finite Element Method.

  • PDF

Characteristics of Undrained Static Shear Behavior for Sand Due to Aging Effect (Aging 효과에 따른 모래의 비배수 정적전단거동 특성)

  • 김영수;김대만
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.137-150
    • /
    • 2004
  • Aging effect of sands showed insignificant result in comparison with that of clay, so that it has not been studied so far. But, as penetration resistance increase has been observed with the lapse of time after deposition and disturbance, aging effect of sands has been actively investigated by field tests, and recently many researchers are performing not oかy field tests but also laboratory tests on sands, so aging effects of sands have been also examined by laboratory tests. In this study, to observe the aging effect of undrained static shear behavior for Nak-Dong River sand, undrained static triaxial tests were performed with changing relative density$(D_r)$, consolidation stress ratio$(K_c)$, and consolidation time. These tests showed that modulus within elastic section increased as consolidation time increased, and in addition, phase transformation point strength$(S_{PT})$ and critical stress ratio point strength $(S_{CSR})$ also increased. But pore water pressure ratio$(u/{p_c}')$ decreased as consolidation time increased, so with this various result, aging effect of static shear for sands can be observed as well.

Dynamic Properties of Korean Subgrade Soils Using Resonant Column Test (공진주 시험기를 이용한 국내 노상토의 동적 물성치)

  • Kim, Dong-Su;Jeong, Chung-Gi;Hong, Seong-Yeong
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Resonant column test huts been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in therms of shear and Young's moduli and material damping. In thin Paper, dynamic Properties of typical Korean subgrade boils are investigated at shearing strains between 10-4% and 10-1% using Stokoe-type resonant column teat. The elastic threshold strains(yte) above which shear modulus and damping ratio are affected by strain amplitude, are defined at strain amplitude of about 10-3%. Below yte", small-strain shear modulus (Gmn) increases with confining pressure (Qc) as proportional to (Qe)0.61, and small-strain damping ratio(Dmin) ranges between 1% and 5.7%. Above yte, normalized shear modulus reduction curve(G/Gma. versus log strain) can be quite well expressed with Ramberg Osgood stress -strain equation and match well the curve suggested for sand by Seed and Idriss.riss.

  • PDF

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.