• 제목/요약/키워드: elastic numerical analysis

검색결과 1,255건 처리시간 0.026초

Influence of creep on dynamic behavior of concrete filled steel tube arch bridges

  • Ma, Yishuo;Wang, Yuanfeng;Su, Li;Mei, Shengqi
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.109-122
    • /
    • 2016
  • Concrete creep, while significantly changing the static behaviors of concrete filled steel tube (CFST) structures, do alter the structures' dynamic behaviors as well, which is studied quite limitedly. The attempt to investigate the influence of concrete creep on the dynamic property and response of CFST arch bridges was made in this paper. The mechanism through which creep exerts its influence was analyzed first; then a predicative formula was proposed for the concrete elastic modulus after creep based on available test data; finally a numerical analysis for the effect of creep on the dynamic behaviors of a long-span half-through CFST arch bridge was conducted. It is demonstrated that the presence of concrete creep increases the elastic modulus of concrete, and further magnifies the seismic responses of the displacement and internal force in some sections of the bridge. This influence is related closely to the excitation and the structure, and should be analyzed case-by-case.

Distortional and local buckling of steel-concrete composite box-beam

  • Jiang, Lizhong;Qi, Jingjing;Scanlon, Andrew;Sun, Linlin
    • Steel and Composite Structures
    • /
    • 제14권3호
    • /
    • pp.243-265
    • /
    • 2013
  • Distortional and local buckling are important factors that influences the bearing capacity of steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. The critical bending moment calculation formula of distortional buckling is established. In addition, mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the proposed models.

국부적 굽힘붕괴를 수반하는 평면프레임의 대변형 해석 (Large Deflection Analysis of a Plane Frame with Local Bending Collapse)

  • 김천욱;원종진;강명훈
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1889-1900
    • /
    • 1995
  • In this study, a large deflection analysis of a plane frame composed of a thin-walled tube in investigated. When bent, a thin-walled tube is usually controlled by local buckling and subsequent bending collapse of the section. So load resistance reaches the yield level in a thin-walled rectangular tube. This relationship can be divided into three regimes : elastic, post-buckling and crippling. In this paper, this relationship is theoretically presented to be capable of describing nonlinearities and a stiffness matrix is derived by introducing a compound beam-spring element. A numerical analysis uses a constant incremental energy method and the solution is obtained by modifying stiffness matrix at elastic/inelastic stage. This analytical results, load-deflection paths show a good agreement with the test results.

Shadow Mask용 냉간 압연박판의 잔류응력 해석 (Residual Stress Analysis of Cold Rolled Sheet in Shadow Mask)

  • 정호승;조종래;문영훈;김교성
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.195-198
    • /
    • 2002
  • Residual stress of sheet occurs during cold rolling and it is hard to avoid and inevitable. The residual stress in the sheet cause etching curls when it suffers peroration process. The residual stress through the thickness direction in the sheet is a function of a friction coefficient, total reduction, mil size and initial sheet thickness. To estimate the residual stress and deformation due to etching curl, FEM analysis is performed. A numerical analysis is used a ANSYS 5.6 and an elastic-plastic constitutive equations. rho simulation results indicate a distribution of residual stress.

  • PDF

$\rho$-Version 유한요소해석에 의한 탄소성 평판의 극한하중 관정 (A Limit Load of Elastic-Plastic Plates by $\rho$-Version Finite Element Analysis)

  • 박진환;정우성;우광성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.33-40
    • /
    • 1998
  • Although a structural analysis based on e linear elastic theory yields good results for deformations and stresses produced by working loads, it fails to assess the teal load-carrying of the plates on the verge of yielding. In case of a limit analysis of plates, the yield line theory is widely used on the basis of the upper bound theorem and theoretically it overestimates the strength of the plate. There is, therefore, a general need for analytical methods of predicting the inelastic behavior and load-carrying capacities of plate subjected to arbitrary loadings and boundary conditions. The $\rho$-version of finite element method has been presented for determining the accurate limit load of plates. The numerical results by $\rho$-version model compares with the results obtained by the h-version software ADINA as well as with the available analytical solutions in literatures.

  • PDF

Vibration Analysis of Smart Embedded Shear Deformable Nonhomogeneous Piezoelectric Nanoscale Beams based on Nonlocal Elasticity Theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Zenkour, Ashraf M.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.255-269
    • /
    • 2017
  • Free vibration analysis is presented for a simply-supported, functionally graded piezoelectric (FGP) nanobeam embedded on elastic foundation in the framework of third order parabolic shear deformation beam theory. Effective electro-mechanical properties of FGP nanobeam are supposed to be variable throughout the thickness based on power-law model. To incorporate the small size effects into the local model, Eringen's nonlocal elasticity theory is adopted. Analytical solution is implemented to solve the size-dependent buckling analysis of FGP nanobeams based upon a higher order shear deformation beam theory where coupled equations obtained using Hamilton's principle exist for such beams. Some numerical results for natural frequencies of the FGP nanobeams are prepared, which include the influences of elastic coefficients of foundation, electric voltage, material and geometrical parameters and mode number. This study is motivated by the absence of articles in the technical literature and provides beneficial results for accurate FGP structures design.

Effective buckling length of steel column members based on elastic/inelastic system buckling analyses

  • Kyung, Yong-Soo;Kim, Nam-Il;Kim, Ho-Kyung;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.651-672
    • /
    • 2007
  • This study presents an improved method that uses the elastic and inelastic system buckling analyses for determining the K-factors of steel column members. The inelastic system buckling analysis is based on the tangent modulus theory for a single column and the application is extended to the frame structural system. The tangent modulus of an inelastic column is first derived as a function of nominal compressive stress from the column strength curve given in the design codes. The tangential stiffness matrix of a beam-column element is then formulated by using the so-called stability function or Hermitian interpolation functions. Two inelastic system buckling analysis procedures are newly proposed by utilizing nonlinear eigenvalue analysis algorithms. Finally, a practical method for determining the K-factors of individual members in a steel frame structure is proposed based on the inelastic and/or elastic system buckling analyses. The K-factors according to the proposed procedure are calculated for numerical examples and compared with other results in available references.

포장체의 강성이 강상판의 거동에 미치는 영향에 관한 기초연구 (A Fundamental Study on the Effects of Pavement Stiffness to the Structural Behavior of Orthotropic Steel Plate Deck)

  • 이환우;정두회
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.191-198
    • /
    • 2003
  • The pavement stiffness is scarcely used in structural analysis to design the superstructure of bridge. It is reasonable not to consider it in the case of asphalt concrete pavement over concrete deck because the pavement stiffness compared with the concrete deck plate can be ignored. However, sometimes, the pavement materials have a similar amount of elastic modulus to concrete and are applied to the orthotropic steel deck plate which has relatively less stiffness compared with the concrete deck plate. In this paper, the steel plate deck of a real bridge project was analyzed by considering the pavement stiffness by linear elastic FEM. It was assumed that a perfect bond between the steel plate deck and the pavement exited. The results indicated that the structural behavior of the orthotropic steel deck plate can be estimated enough to affect the evaluation result of structural capacity in some cases. Therefore, the investigations by experimental tests and more advanced numerical model are indispensible in figuring the design formula for considering the effects of pavement stiffness in the structural analysis of an orthotropic bridge.

파진행 문제를 위한 Paraxial 경계조건의 유한요소해석 (Finite Element Analysis with Paraxial Boundary Condition)

  • 김희석;이종세
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.303-309
    • /
    • 2007
  • 무한영역에서 진행하는 탄성파를 유한영역에서 수치적으로 해석하기 위해 많은 흡수경계조건들이 제안되어져 왔다. Paraxial 경계조건은 흡수경계조건의 하나로서 스칼라 및 탄성파 방정식의 paraxial 근사화를 통해 얻어지며, 그 성능이 우수하고 수치해석시 계산적 부담을 주지 않는다. 그러나 경계조건이 복잡한 편미분 방정식으로 표현되어 있어 유한요소해석으로의 적용이 어렵다. 본 논문에서는 penalty function method를 이용하여 전체 에너지 범함수와 paraxial 경계조건을 함께 변분정식화 함으로써 유한요소해석을 수행하였다. 유한요소해석에 가장 적용이 용이하며, 많이 사용되어지는 Lysmer-Kuhlemeyer의 흡수경계조건과 성능을 비교함으로써 연구결과의 타당성을 입증하였다.

Parametric study of the convergence of deep tunnels with long term effects: Abacuses

  • Quevedo, Felipe P.M.;Bernaud, Denise
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.973-986
    • /
    • 2018
  • The objective of this paper is to present abacuses obtained from a parametric study of deep-lined tunnels using a numerical finite element model. This numerical model was implemented in software GEOMEC91, which is a two-dimensional axisymmetric model that considers the progress of excavation and the placing of the lining through the activation and deactivation of elements. It is adopted a step of excavation constant (1/3 of radius), constant velocity and circular cross section along the tunnel axis. It is used for rock mass a viscoplastic constitutive law with von-Mises criterion of viscoplasticity without hardening whose deformation rate over time is given by the Bingham model. The lining uses a linear elastic constitutive law. In total are 1716 analysis presented in 60 abacuses that show the value of ultimate convergence ($U_{eq}$) due to tunneling speed. In addition, it is shown an example of the use of the abacuses to determine the ultimate convergence ($U_{eq}$) of the tunnel and pressure ($P_{eq}$) on the lining.