Acknowledgement
Supported by : Natural Science Foundation of China
References
- Aldemir, U., Yanik, A. and Bakioglu, M. (2012), "Control of structural response under earthquake excitation", Comput.-Aided Civil Infra. Eng., 27(8), 620-638. https://doi.org/10.1111/j.1467-8667.2012.00776.x
- Alizadeh, R., Beaudoin, J.J. and Raki, L. (2010), "Viscoelastic nature of calcium silicate hydrate", Cement Concrete Compos., 32(5), 369-376. https://doi.org/10.1016/j.cemconcomp.2010.02.008
- Bazant, Z.P. (1972), "Prediction of concrete creep effects using age-adjusted effective modulus method", J. Am. Concrete Inst., 69(20), 212-217.
- Bazant, Z.P. (1988), Mathematical Modeling of Creep and Shrinkage of Concrete, John Wiley & Sons, Chichester and New York, NY, USA.
- Bazant, Z.P. and Baweja, S. (2000), "Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3", ACI Special Publications, 194, 1-84.
- Bazant, Z.P. and Prasannan, S. (1989a), "Solidification theory for concrete creep. I: Formulation", J. Eng. Mech., 115(8), 1691-1703. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1691)
- Bazant, Z.P. and Prasannan, S. (1989b), "Solidification theory for concrete creep. II: Verification and application", J. Eng. Mech., 115(8), 1704-1725. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1704)
- Cook, D.J. and Chindaprasirt, P. (1980), "Influence of loading history upon the compressive properties of concrete", Mag. Concrete Res., 32(111), 89-100. https://doi.org/10.1680/macr.1980.32.111.89
- Davis, R.E. and Davis, H.E. (1931), "Flow of concrete under the action of sustained load", J. Am. Concrete Inst., 2(7), 837-901.
- Federation Internationale du Beton (FIB) (2010), CEB-FIP Model Code 2010.
- Felippa, C.A. and Haugen, B. (2005), "A unified formulation of small-strain corotational finite elements: I. Theory", Comput. Method. Appl. Mech. Eng., 194(21-24), 2285-2335. https://doi.org/10.1016/j.cma.2004.07.035
- Ghodrati Amiri, G., Abdolahi Rad, A. and Khorasani, M. (2012), "Generation of Near-Field Artificial Ground Motions Compatible with Median Predicted Spectra Using PSO-based Neural Network and Wavelet Analysis", Comput.-Aided Civil and Infrastructure Engineering, 27(9), 711-730. https://doi.org/10.1111/j.1467-8667.2012.00783.x
- Graf, W., Freitag, S., Kaliske, M. and Sickert, J.U. (2010), "Recurrent neural networks for uncertain timedependent structural behavior", Computer-Aided Civil Infra. Eng., 25(5), 322-333. https://doi.org/10.1111/j.1467-8667.2009.00645.x
- Hu, S.D., Wang, J.J., Wei, H.Y. and Ye, A.J. (2001), "Seismic behavior analysis of Yajisha Bridge", Railway Standard Design, 21(6), 21-25.
- Huang, R.Y., Mao, I.S. and Lee, H.K. (2010), "Exploring the Deterioration Factors of Bridges: A Rough Set Theory Approach", Computer-Aided Civil Infra. Eng., 25(7), 517-529. https://doi.org/10.1111/j.1467-8667.2010.00665.x
- Ma, Y.S. (2013), "Creep influence on static and dynamic reliability of long-span concrete filled steel tube arch bridges", Ph.D. Dissertation; Beijing Jiaotong University, Beijing, China.
- Ma, Y.S. and Wang, Y.F. (2013), "Creep effects on the reliability of concrete-filled steel tube arch bridge", J. Bridge Eng., 18(10), 1-10. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000448
- Ma, Y.S., Wang, Y.F. and Mao, Z.K. (2011), "Creep effects on dynamic behavior of concrete filled steel tube arch bridge", Struct. Eng. Mech., Int. J., 37(3), 321-330. https://doi.org/10.12989/sem.2011.37.3.321
- Malvern, L. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice Hall, New York.
- Naguib, W. and Mirmiran, A. (2003), "Creep modeling for concrete-filled steel tubes", J. Construct. Steel Res., 59(11), 1327-1344. https://doi.org/10.1016/S0143-974X(03)00085-3
- Nour-Omid, B. and Rankin, C.C. (1991), "Finite rotation analysis and consistent linearization using projectors", Comput. Method. Appl. Mech. Eng., 93(3), 353-384. https://doi.org/10.1016/0045-7825(91)90248-5
- O'Byrne, M., Schoefs, F., Ghosh, B. and Pakrashi, V. (2013), "Texture Analysis Based Damage Detection of Ageing Infrastructural Elements", Computer-Aided Civil Infra. Eng., 28(3), 162-177. https://doi.org/10.1111/j.1467-8667.2012.00790.x
- Qin, J. and Faber, M.H. (2012), "Risk management of large RC structures within a spatial information system", Computer-Aided Civil Infra. Eng., 27(6), 385-405. https://doi.org/10.1111/j.1467-8667.2012.00757.x
- Rankin, C.C. and Brogan, F.A. (1986), "An element independent corotational procedure for the treatment of large rotations", J. Press. Vessel Technol., 108(2), 165-174. https://doi.org/10.1115/1.3264765
- Sapountzakis, E.J. and Katsikadelis, J.T. (2003), "Creep and shrinkage effect on the dynamic analysis of reinforced concrete slab-and-beam structures", J. Sound Vib., 260(3), 403-416. https://doi.org/10.1016/S0022-460X(02)00938-0
- Shao, X.D., Peng, J.X., Li, L.F., Yan, B.F. and Hu, J.H. (2010), "Time-dependent behavior of concrete-filled steel tubular arch bridge", J. Bridge Eng., 15(1), 98-107. https://doi.org/10.1061/(ASCE)1084-0702(2010)15:1(98)
- Terrey, P.J., Bradford, M.A. and Gilbert, R.I. (1994), "Creep and shrinkage of concrete in concrete-filled circular steel tubes", Proceeding of 6th International Symposium on Tubular Structures, Melbourne, Australia, December.
- Wang, Y.F. and Zhang, D.J. (2009), "Creep-effect on mechanical behavior of concrete confined by FRP under axial compression", J. Eng. Mech., 135(11), 1315-1322. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:11(1315)
- Wang, Y.F., Han, B. and Zhang, D.J. (2008), "Advances in creep of concrete filled steel tube members and structures", Proceeding of 8th Concreep Conference, Ise-Shima, Japan, October, pp. 595-600.
- Wang, Y.F., Ma, Y.S., Han, B. and Deng, S.Y. (2013), "Temperature effect on creep behavior of CFST arch bridges", J. Bridge Eng., 18(12), 1397-1405. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000484
- Washa, G.W. and Fluck, P.G. (1950), "Effect of sustained loading on compressive strength and modulus of elasticity of concrete", J. Am. Concrete Inst., 21(9), 693-700.
- Wu, Q.X., Yoshimura, M., Takahashi, K., Nakamura, S. and Nakamura, T. (2006), "Nonlinear seismic properties of the Second Saikai Bridge: A concrete filled tubular (CFT) arch bridge", Eng. Struct., 28(2), 163-182. https://doi.org/10.1016/j.engstruct.2005.05.003
- Xin, B. and Xu, S.Q. (2003), "Creep analysis of long-span concrete filled steel tube arch bridges", Railway Standard Design, 4, 31-33.
- Zhang, D.J., Wang, Y.F. and Ma, Y.S. (2010), "Compressive behaviour of FRP-confined square concrete columns after creep", Eng. Struct., 32(8), 1957-1963. https://doi.org/10.1016/j.engstruct.2010.02.023
Cited by
- Out-of-plane creep buckling analysis on slender concrete-filled steel tubular arches vol.140, 2018, https://doi.org/10.1016/j.jcsr.2017.10.010
- Numerical study of a new constructive sequence for movable scaffolding system (MSS) application vol.4, pp.3, 2016, https://doi.org/10.12989/acc.2016.4.3.173
- Experimental study on creep behavior of fly ash concrete filled steel tube circular arches vol.27, pp.2, 2016, https://doi.org/10.12989/scs.2018.27.2.185
- AN INVESTIGATION INTO WORKING BEHAVIOR CHARACTERISTICS OF PARABOLIC CFST ARCHES APPLYING STRUCTURAL STRESSING STATE THEORY vol.25, pp.3, 2016, https://doi.org/10.3846/jcem.2019.8102
- Compressive strength of circular concrete filled steel tubular stubs strengthened with CFRP vol.39, pp.2, 2016, https://doi.org/10.12989/scs.2021.39.2.189
- Experimental study and application of manufactured sand self-compacting concrete in concrete-filled-steel-tube arch bridge: A case study vol.15, pp.None, 2016, https://doi.org/10.1016/j.cscm.2021.e00718