• Title/Summary/Keyword: elastic numerical analysis

Search Result 1,251, Processing Time 0.027 seconds

Comparison of Stability Evaluation Methods using ASD and LRFD Codes for Girders and Towers of Steel Cable-Stayed Bridges (사장교 거더와 주탑의 안정성 검토를 위한 ASD와 LRFD 설계법 비교)

  • Choi Dong-Ho;Yoo Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1001-1008
    • /
    • 2006
  • The main objective of this paper is to compare economical effectiveness of typical methods for checking stability in principal components of steel cable-stayed bridges. Elastic and inelastic buckling analyses are carried out for frame-like numerical models of cable-stayed bridges. The axial-flexural interaction equations prescribed in AASHTO Allowable Stress Design (ASD) and AASHTO Load and Resistance Factor Design (LRFD) are used in order to check the stability of principal components. Parametric studies are performed for numerical models which have the center span length of 300m, 600m, 900m and l200m with different girder depths. Peak values of the interaction equations are calculated at the intersection point between girders and towers. These peak values are considered as a major factor to design of principal components of cable-stayed bridges. As a result, more economical design for girders and towers can be feasible using the inelastic buckling analysis. In addition, LRFD codes are more economical about 20% on the average than ASD codes for all numerical models of cable-stayed bridges.

  • PDF

Three-dimensional Finite Element Analysis of Rubber Pad Deformation (고무패드 변형의 3차원 유한요소해석)

  • Shin, S.J;Lee, T.S;Oh, S.I
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.111-120
    • /
    • 1998
  • This paper is the first one of two-parted research efforts focusing on the modeling of rubber pad forming process. The rubber pad, driven by the pressurized fluid during the forming process, pushes the sheet metal to solid tool half and forms a part to final shape. In this part of the paper, a numerical procedure for the FE analysis of the rubber pad deformation is presented. The developed three-dimensional FE model is based on the total Lagrangian description of rubber maerial characterized by nearly incompressible hyper-elastic behavior under a large deformation assumption. Validity of the model as well as effects of different algorithms corresponding to incompresibility constraints and time integration methods on numerical solution responses are also demonstrated.

Numerical simulation of the crack propagation behavior in 3D elastic body

  • Taniguchi, Takeo;Miyaji, Akihiko;Suetsugu, Takeshi;Matsunaga, Shohgo
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.227-244
    • /
    • 1994
  • The purpose of this investigation is to propose a numerical simulation method of the crack propagation behavior in 3-dimensionl elastic body. The simulation method is based on the displacement-type finite element method, and the linear fracture theory is introduced. The results from the proposed method are compared with those from the structural experiments, and the good coincidences between them are shown in this paper. At the same time, 2-dimensional analysis is also done, and the results are compared with those obtained from 3-dimensional analysis and the structural experiments.

Analysis of Material Deformation Behavior in Nanoindentation Process by using 3D Finite Element Analysis and its Experimental Verification (3차원 유한요소해석을 이용한 나노인덴테이션 공정에서의 소재거동해석 및 실험적 검증)

  • 이정우;윤성원;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1174-1177
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic recover and pile-up was proposed. The indenter was modeled a 3D rigid surface. Minimum mesh sizes of specimens are 1-10nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

  • PDF

Tunnel Deformation in Shallow Unconsolidated Ground by Using Strain-Softening Model (변형연화모델을 이용한 미고결 지반의 터널변형)

  • Seo, In-Shik;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • In case of an urban tunnel, the displacement of ground base controls the tunnel design because it is built on shallow and unconsolidated ground many times. There are more insufficiency to describe the ground movement which coincides in the measured result of the situ because the design of an urban tunnel is dependent on the method of numerical analysis used to the existing elastic and elasto-plastic models. We studied about the prediction for the ground movement of a shallow tunnel in unconsolidated ground, mechanism of collapse, and settlement. Also this paper shows comparison with the existing elastic and elasto-plastic model using the unlinear analysis of the strain-softening model. We can model the real ground movement as the increasement of ground surface inclination or occurrence of shear band by using strain-softening model for the result of ground movement of an urban NATM tunnel.

  • PDF

Effect of External Corrosion in Pipeline on Failure Prediction

  • Lee, Ouk-Sub;Kim, Ho-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.48-54
    • /
    • 2000
  • This paper presents the effect of shape of external corrosion in pipeline on failure prediction by using a numerical simulation. The numerical study for the pipeline failure analysis is based on the FEM(Finite Element Method)with an elastic-plstic and large-deformation analysis. Corrosion pits and narrow corrosion grooves in pressurized pipeline were analysed. A failure criterion, based on the local stress state at the corrosion and a plastic collapse failure mechanism, is proposed. The predicted failure stress assessed for the simulated corrosion defects having different corroded shapes along the pipeline axis compared with those by methods specified in ANSI/ASME B31G code and a modified B31G code. It is concluded the corrosion geometry significantly affects the failure behavior of corroded pipeline and categorisation of pipeline corrosion should be considered in the development of new guidance for integrity assessment.

  • PDF

Dynamic Contact Analysis of Spur Gears (평기어의 동접촉 해석)

  • Lee, Ki-Su;Jang, Tae-Sa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.148-159
    • /
    • 1999
  • A numerical method is presented for the dynamic analysis of spur gears rotating with very high angular speeds. For an efficient computation each gear is assumed to consist of a rotating rigid disk and an elastic tooth having mass, and finite element formulations are used for the equations of motion of the tooth. The geometric constraint is imposed between the rigid disk and the elastic tooth to fix them, and contact condition is imposed between the meshing teeth of the gears. At each iteration of each time step the Lagrange multiplier and contact force are revised by using the constraint error vector, and then the whole equations of motion are time integrated with the given Lagrange multiplier and contact force. For the accurate solution the velocity and acceleration constraints as well as the displacement constraint are satisfied by the monotone reductions of the constraint error vectors. Computing procedures associated with the iterative schemes are explained and numerical simulations are conducted with the spur gears.

  • PDF

Finite Element Analysis with Paraxial Boundary Condition (파진행 문제를 위한 Paraxial 경계조건의 유한요소해석)

  • Kim, Hee-Seok;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.475-480
    • /
    • 2007
  • For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. In this paper we focus on both first- and second-order paraxial boundary conditions(PBCs) in the framework of variational approximations which are based on paraxial approximations of the scalar and elastic wave equations- We propose a penalty function method for the treatment of PBCs and apply these into finite element analysis. The numerical verification of the efficiency is carried out through comparing PBCs with Lysmer-Kuhlemeyer' s boundary conditions.

  • PDF

Numerical Analysis of the Contour Method for Measuring Residual Stresses in Laser Shock Peened Ti-6Al-4V Strips

  • Shin Shang-Hyon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.290-296
    • /
    • 2005
  • The contour method is based on the elastic superposition principle, and relies on deformations that occur when a residually stressed part is cut along a plane. During the cut, the part is constrained at a location along the cut so that deformations are restrained as much as possible. The displacement is applied to an elastic FE model of the half. When plasticity is involved in the relaxation process, the superposition principle is no longer valid, and stress error in the resulting measurement of residual stress would be caused. Residual stress states in a laser peened Ti-6Al-4V strip were taken for the FE simulation.

Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nano-scratch Process (나노스크래치 공정을 이용하여 극미세 패턴을 제작하기 위한 나노 변형의 유한요소해석)

  • 이정우;강충길;윤성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.139-146
    • /
    • 2004
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation scratch test was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass 7740) were used as specimens, and forming conditions to reduce the elastic recovery and pile-up were proposed. The indenter was modeled as a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. Variables of the nanoindentation scratch test analysis are scratching speed, scratching load, tip radius and tip geometry. The nano-indentation scratch tests were performed by using the Berkovich pyramidal diamond indenter. Comparison between the experimental data and numerical result demonstrated that the FEM approach can be a good model of the nanoindentation scratch test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.