• Title/Summary/Keyword: elastic modulus ratio

Search Result 480, Processing Time 0.024 seconds

Strain-dependent-deformation property of Gyeongju compacted bentonite buffer material for engineered barrier system

  • Ivan Jeff Navea;Jebie Balagosa;Seok Yoon;Yun Wook Choo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1854-1862
    • /
    • 2024
  • This study aims to investigate the strain-dependent-deformation property of Gyeongju bentonite buffer material. A series of unconfined compressive tests were performed with cylindrical specimens prepared at varying dry densities (𝜌d = 1.58 g/cm3 to 1.74 g/cm3) using cold isostatic pressing technique. It is found that as 𝜌d increase, the unconfined compressive strength (qu), failure strain, and elastic modulus (E) of Gyeongju compacted bentonite (GCB) increases. Normalized elastic modulus (Esec/Emax) degradation curves of GCB specimens are fitted using Ramberg-Osgood model and the elastic threshold strain (𝜀e,th) is determined through the fitted curves. The strain-dependency of E and Poisson's ratio (v) of GCB were observed. E and v were measured constant below 𝜀e,th of 0.14 %. Then, E decreases while v increases after exceeding the strain threshold. The Esec/Emax degradation curves of GCB in this study suggests wider linear range and higher linearity than those of sedimentary clay in previous study. On top of that, the influence of 𝜌d is observed on Esec/Emax degradation curves of GCB, showing a slight increase in 𝜀e,th with increase in 𝜌d. Furthermore, an empirical model of qu with 𝜌d and a correlation model between qu and E are proposed for Gyeongju bentonite buffer materials.

An Experimental Study on the Properties of Lightweight Concrete Using Expanded Clay (팽창점토를 사용한 경량콘크리트의 특성에 관한 실험적 연구)

  • Kim, Jong-In;Choi, Young-Wha;Ha, Sang-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.225-232
    • /
    • 2002
  • The purpose of this study is to find the mechanical properties of lightweight concrete using expanded clay. Thus, slump, air content, compressive strength, elastic modulus, tensile strength, length change ratio, unitweight change ratio and absorption of lightweight concrete have been investigated. The conclusions of this study are as follows ; 1. The loss of slump and air content of concrete increased as the expanded clay content increased and the size of coarse aggregate decreased. 2. The compressive strength of concrete using 100% expanded clay of 13, 19mm size at 28 days were respectively 282, $252kgf/cm^2$. 3. The elastic modulus and tensile strength of concrete decreased with increase of expanded clay content. 4. The length change ratio of concrete increased with the larger coarse aggregate size, and decreased with the increase of expanded clay content. 5. The unit weight of concrete decreased with the increase of expanded clay content, and the ratio of that was larger at the early age.

  • PDF

Mechanical Properties of Steel-Fiber Reinforced Concrete (강섬유보강콘크리트의 역학적 거동 특성)

  • 홍성구;권숙국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.81-91
    • /
    • 1989
  • The aims of this study were to determine mechanical properties of steel-fiber reinforced concrete under splitting tensile, flexural and compressive loading, and thus to improve the possible applications of concrete. The major factors experimentally investigated in this study were the fiber content and the length and the diameter of fibers. The major results obtained are summarized as follows : 1.The strength, strain, elastic modulus and energy obsorption capability of steel-fiber reinforced concrete under splitting tensile loading were significantly improved by increasing the fiber content or the aspect ratio. 2.The flexural strength, central deflection, and flexural toughness of steel4iber reinforced beams were significantly improved by increasing the fiber content or the aspect ratio. And flexural behavior characteristic was good at the aspect ratio of about 60 to 75. 3.The strength, strain, and energy absorption capability in compression were increased with the increase of the fiber content. These effects were not so sensitive to the aspect ratio. The energy absorption capability was improved only slightly with the increase of the fiber length. 4.The elastic modulus, transverse strains, and poisson's ratios in compression were not influenced by the fiber content. 5.The steel-fibers were considered to be appropriated as the materials covering the weakness of concrete because the mechanical properties of concrete in tension and flexure were significantly improved by steel-fiber reinforcement.

  • PDF

Characterization of Silicon Nitride Coating Films (Si-N 코팅막의 기계적 물성 및 구조 분석)

  • Go, Cheolho;Kim, Bongseob;Yun, Jondo;Kim, Kwangho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.359-365
    • /
    • 2005
  • Silicon nitride coating films with various ratios of nitrogen to silicon contents were prepared and characterized. The film was coated on silicon substrate by sputtering method with changing nitrogen gas flow rate in a chamber. The nitrogen to silicon ratio was found to have values in a range from 0 to 1.4. Coated film was characterized with scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, nanoindentation scanning probe microscopy, x-ray photon spectrometry, and Raman spectrometry. Silicon nitride phase in all samples showed amorphous nature regardless of N/Si ratio. When N/Si ratio was 1.25, hardness and elastic modulus of silicon nitride film showed maximum with 22 GPa and 210 GPa, respectively. Those values decreased, when N/Si ratio was higher than 1.25. Raman spectrum showed that no silicon phase exist in the film. XPS result showed that the silicon-nitrogen bond was dominant way for atomic bonding in the film. The structure and property was explained with Random Bonding Model(RBM) which was consistent with the microstructure and chemistry analysis for the coating films.

Fracture Analysis of Bone-Like Materials Using J integral (J 적분을 이용한 뼈와 유사한 재료의 파괴 해석)

  • Lee, Chang-Woo;Lin, Song;Beom, Hyeon-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.52-57
    • /
    • 2010
  • The analysis of a crack in a bone-like material is performed numerically. The bone-like material is hierarchically structured and each hierarchy is structured by mineral platelets and protein matrix through staggered arrangement. Mechanical behavior of the composite can be analyzed using tension shear chain model. The Dugdale model is adopted to evaluate the fracture energy of Bone-like material. The fracture energy dissipation is assumed to concentrate within a strip near the crack tip along the prospective crack path. Fracture criterion of the bone-like material is estimated by using J integral. Effects of hierarchical level, ratio of elastic modulus of mineral to protein, aspect ratio of mineral platelet and volume fraction on J integral are investigated. It is found that the J integral decreases as elastic modulus ratio and hierarchy level increase. It is also shown that the J integral increases as the volume fraction and aspect ratio decrease.

Analytical Studies for Estimating Soil Properties from the SPT Dynamic Signals (SPT 동적신호를 이용한 지반정보 추정에 관한 해석적 연구)

  • 이병식;김영수;김범상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.423-430
    • /
    • 2002
  • A feasibility of a trial test method was evaluated analytically, in which the elastic modulus of a soil deposit was tried to estimate by analyzing dynamic signals measured during conducting the SPT. If there existed a reliable relationship between the impedance ratio of a rod to a soil and the amplitude ratio of a reflected to an incident wave signal at the tip of steel rod contacting the soil surface, it was expected that one could determine the impedance of soil, and then roughly estimate the elastic modulus from the impedance. For a simple rod-soil system, the existence of the relevant relationship was verified in this study by analyzing computed wave signals propagating up and down through the rod. On the basis of these results, thus, a potential of the test method to practical applications could be seen. However, apparent theoretical shortcomings possessed in this approach were also realized since the soil part had an unconfined contact area where contacted with the rod. Therefore, it was concluded that further studies needed to be conducted, in which the reliable theoretical relationship between the impedance and the amplitude ratio as well as the effective contacting soil area contributing to wave reflection should be justified.

  • PDF

A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code (입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구)

  • You, Kwang Ho;Lee, Chang Su;Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

A Study on the Development of Photoelastic Experiment Model Material for Transversely Isotropic Material (횡등방성체용 광탄성재료 개발에 관한 연구)

  • 황재석;김병일;이광호;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1876-1888
    • /
    • 1995
  • In this paper, glass surface-mat reinforced epoxy(G.S.R.E.) is developed, It is assured that the material(G.S.R.E.) can be used as photoelastic model material and it satisfy with the required properties of photoelastic model material. Therefore, the material can be used as model material of transparent photoelastic experiment when we analyze the stress distributions of transversely isotropic material by photoelastic experiment. When we use G.S.R.E. as photoelastic experiment model material, we had better use the G.S.R.E. which fiber volume ratio is less than 0.7% in the high temperature(stress freezing method) and than 1.74% in the room temperature. Relationships between stress fringe value and elastic modulus in transversely isotropic material are developed in this paper, it is assured by experiment that they are established in the room temperature or in the high temperature. Therefore we can obtain stress fringe value or elastic modulus from the relationships between stress fringe value and elastic modulus.

Mechanical Properties of ITO / Glass Thin Film by Indentation Method (나노인덴터에 의한 ITO / Glass 박막재의 기계적 특성)

  • Yoon, Han-Ki;Kim, Do-Hyoung;Shin, Do-Hoon;Murakami, Ri-Ichi
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.59-63
    • /
    • 2007
  • The thin film of indium tin oxide (ITO) was prepared using the inclination opposite target type DC magnetron sputtering equipment onto the glass substrate at room temperature, using oxidized ITO with In2O3 and SnO2in a weight ratio of 9:1. The elastic modulus and hardness of the ITO thin films, prepared at different deposition conditions, were determined through anano-indentation experiment. The work pressure was varied from $2.6{\times}10-1\;to\;8.3{\times}10-1Pa$. The results show that the variation of work pressure during film deposition could vary significantly, according to the elastic modulus and hardness of the ITO thin films. It also can be seen that a minimum value exists in the film resistivity for the ITO thin films, prepared according to the variation of work pressure. However, the ITO film produced at room temperature had a microstructure in which a X ray diffraction peak is not clear, regardless of the work pressure.

Examination of Stress Changes Depending on the Size of the Repaired Part of a Partially Repaired RC Beam (부분보수한 RC보의 보수부 크기에 따른 응력 변화 검토)

  • Kwon, Hyeong-Soon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.47-48
    • /
    • 2023
  • Reinforced concrete structures are an integrated structure in which reinforcing bars are placed on the tensile side of the beam to compensate for concrete that is strong in compression but weak in tension, so that the concrete receives compressive force and the reinforcing bars receive tensile force. It is durable, fire-resistant, economical, and adapts to the shape and dimensions of the structure. It has been widely used for a long time because it can be made freely without restrictions. However, reinforced concrete structures have the disadvantage that cracks occur easily, so they are repaired using a cross-sectional construction method. During this process, problems such as the repair part falling off occurred, so in order to solve the problem, stress changes due to changes in the size of the repair part were examined. As a result, based on the elastic modulus ratio of 1.0, the stress tended to increase as the size of the repair part decreased when it was less than 1.0, and the opposite tendency was seen when it was more than 1.0. This is believed to be due to an increase in the area of the part with a large elastic modulus.

  • PDF