• Title/Summary/Keyword: elastic modulus ratio

Search Result 478, Processing Time 0.024 seconds

Displacements and stresses in pressurized thick FGM cylinders with exponentially varying properties based on FSDT

  • Ghannad, Mehdi;Gharooni, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.939-953
    • /
    • 2014
  • Using the infinitesimal theory of elasticity and analytical formulation based on the first-order shear deformation theory (FSDT) is presented for axisymmetric thick-walled cylinders made of functionally graded materials under internal and/or external uniform pressure. The material is assumed to be isotropic heterogeneous with constant Poisson's ratio and radially exponentially varying elastic modulus. At first, general governing equations of the FGM thick cylinders are derived by assumptions of the FSDT. Then the obtained equations are solved under the generalized clamped-clamped conditions. The results are compared with the findings of both FSDT and finite element method (FEM).

Synthesis and Physical Properties of Biocompatible and Biodegradable Polypeptide Copolymers(II) (생체적합성과 생분해성을 갖는 Polypeptide Copolymer의 합성과 물성에 관한 연구(II))

  • 강인규;권대룡
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.237-242
    • /
    • 1989
  • The physical properties and drug release behaviours of polyethylene glycol grafted poly ${\gamma}$- benzyl L-glutamate (PEG- g- PBLG), polyethylene glycol crosslinked poly ${\gamma}$-benzyl L- glutamate(PEG-c-PBLG), and PBLG homopolymer are compared. PBLG containing PEG segements showed higher wettability and larger enlongation than PBLG homoplymer, but lower elastic modulus. The release rate of rhodamine is strongly influenced by the wettability of the polymer. Rhodamine is more rapidly released from PEG-c-PBLG membrane having a larger water contact angle than from other polymer having a lower water contact angle. The surfaces of PBLG derivative membranes are modified by substitution reaction using hydroxyalkylamine. The resulting polymer membranes showed hider wettability and swelling ratio than virgin membranes.

  • PDF

Stochastic Finite Element Analysis for Rock Caverns Considering the Effect of Discontinuities (불연속면의 영향을 고려한 암반동굴의 확률유한요소해석)

  • 최규섭;황신일;이경진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.95-102
    • /
    • 1996
  • In this study, a stochastic finite element model is proposed with a view to consider the uncertainty of physical properties of discontinuous rock mass in the analysis of structural behavior on underground caverns. In so doing, the LHS(Latin Hypercube sampling) technique has been applied to make up weak points of the Crude Monte Carlo technique. Concerning the effect of discontinuities, a joint finite element model is used that is known to be superior in explaining faults, cleavage, things of that nature. To reflect the uncertainty of material properties, the variables such as the the elastic modulus, the poisson's ratio, the joint shear stiffness, and the joint normal stiffness have been used, all of which can be applicable through normal distribution, log-normal distribution, and rectangulary uniform distribution. The validity of the newly developed computer program has been confirmed in terms of verification examples. And, the applicability of the program has been tested in terms of the analysis of the circular cavern in discontinuous rock mass.

  • PDF

A Study on the physical Properties of concrete Using Waste Foundry Sand (폐주물사를 사용한 콘크리트의 물성에 관한 연구)

  • 최연왕;최재진;김기형;김용직
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.52-57
    • /
    • 1999
  • The aimed of this study is to analyze the qualities of foundry waste sand and the basic physic of the concrete mixed with the foundry waste sand, as a way of study for reusing the foundry waste sand disused in the foundry as the fine aggregate for concrete. According to the experimental results, the foundry waste sand is composed of silica ore whose main ingredient is SiO2 and doesn't produce harmful objects of hydration reaction, and the fluidity of concrete shows a decline with the increase of replacement ratio of foundry waste sand, and the compress strength, the tensile strength, the elastic modulus of concrete containing foundry waste sand are improved at the replacement rate of 25%.

  • PDF

Effect of Fiber on the Acoustic Emission of High Performance Fiber-Reinforced Cement Composite (섬유종류에 따른 고인성 시멘트 복합체의 음향방출특성)

  • Kim, Yun-Soo;Jeon, Esther;Kim, Sun-Woo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.342-345
    • /
    • 2006
  • The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of HPFRCC(High performance fiber-reinforced cementitious composite). Acoustic emission(AE) method was used to evaluate the characteristics of fracture process and the micro-failure mechanism of HPFRCC. For these purposes, three kinds of fibers were used : PP(Polypropylene), PE(Polyethylene), SC(Steel cord). In this study, the AE characteristics of HPFRCC with different fiber type(PE.15, PP2.0, SC0.75+PE0.75) distributions under four-point-bending were studied. The result show that the AE technique is a valuable tool to study the failure mechanism of HPFRCC.

  • PDF

An Experimental Study on the physical-mechanical Properties of Ultra-High-Strength-Concrete (초고강도 콘크리트의 물리적·역학적 특성에 관한 실험적 연구)

  • Park, Hee-Gon;Lee, Jin-Woo;Bae, Yeoun-Ki;Kim, Woo-Jae;Lee, Jae-Sam;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.107-111
    • /
    • 2008
  • As high-rise buildings with 100 or more stories are being constructed, it is inevitable to use high-performance materials including high-performance concrete. What is most important in high-performance concrete is extremely high strength in order to reduce the section of members in high-rise buildings. During the last several years, there have been active researches on Ultra-high-strength concrete. While these researches have been mostly focused on strength development, however, other accompanying physical properties have not been studied sufficiently. Thus, this study purposed to obtain and analyze data on the physical-mechanical properties of Ultra-high-strength concrete through experiments and to use the results as basic information on required performance of concrete used in high-rise buildings.

  • PDF

Flexural Fatigue Behavior of Unreinforced Polyester Polymer Concrete Beams (무근 폴리에스터 폴리머 콘크리트보의 휨피로 거동)

  • 연규석;박제선;김광우;성기태;김태경
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 1993
  • 본 연구는 무근 폴리에스터 폴리머 콘크리트보의 휨피로 거동을 구명키 위한 것으로서 초기균열깊이와 높이의 비 (a/h)를 0, 0.2, 0.4로 하고 응력수준을 45%, 55%, 65%로 하여 피로 시험을 실시한 것이다. 그 결과 초기균열깊이가 커질수록 피로수명이 짧아졌으며, 피로수명비에 따른 휨인장변형도는 균열깊이가 클수록 작아졌다. 또한 휨탄성계수는 피로수명비 0.2에서 0.6정도까지는 선형적인 변화를 보였으나, 초기와 말기에는 비선형적인 변화를 보여주었다. 그리고 응력수준과 균열깊이가 커질수록 취성적인 성질이 더 크게 나타남을 알 수 있었다.

A Study on Biomimetic Composite for Design of Artificial Hip Joint (인공 관절 설계를 위한 바이오미메틱 복합재료에 관한 연구)

  • 김명욱;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.234-238
    • /
    • 1999
  • This study suggests the design of the functionally gradient composite, [0/90/0/core]$_s$ cross-ply laminate, to prevent stress concentration induced from the difference of rigidity between the bone and the artificial hip joint and to reinforce the wear property of the surface and the expectation of their mechanical properties. First, the four-point bending test is done about wet bones and dry bones to know the mechanical properties of the cortical bones. In result, the wet bone shows the viscoelastic behavior and the dry bone shows the elastic behavior. Moreover, we expect the properties of the proposed gradient composites as a function of carbon fiber volume fraction in each layer to apply Halpin-Tsai equation, CLPT(classical laminate plate theory), and Bernoulli beam theory etc. and decide the thickness ratio of each lamina in order to match Young's modulus of the anisotropic cortical bone with the proposed gradient composites.

  • PDF

Optimization of Biomimetic Two-level Hierarchical Adhesive System (자연모사 2층 구조 응착시스템의 최적화)

  • Kim, Tae-Wan
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Geckos have a unique ability to cling to ceilings and walls utilizing dry adhesion. Their foot pads are covered by a large number of small hairs (setae) that contain many branches per seta with a lower level of spatulae. Their fibrillar structure is the primary source of high adhesion. In this study, we construct the adhesion design database for biomimetic adhesive system. A simple idealized fibrillar structure consisting of single array of beams is modeled. The fibers are assumed as oriented cylindrical cantilever beams with spherical tip. We consider three necessary conditions; buckling, fracture and sticking of fiber structure, which constrain the allowed geometry. The adhesion analysis is performed for the attachment system in contact with rough surfaces with different s values for different main design variables-fiber radius, aspect ratio and material elastic modulus and so on. The developed adhesion design databases are useful for understanding biological systems and for guiding of fabrication of the biomimetic attachment system.

Mechanical Properties of Concrete Containing Silicic Wastes (규사성분의 산업폐기물을 혼입한 콘크리트의 역학적 특성)

  • 박제선;김태경;이주형;백민경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.192-197
    • /
    • 1996
  • An experimental study was performed to examine the feasibility of using silicic wastes as construction materials for civil structures, and investigate its utility as a replacement for the favored nature resource to prevent the economic loss. In order to achieve this objective, mechnical properties of concrete containing silicic wastes is tested by investigating the strength development through parameters of water-binder ratios replacement 10 percent ratio with respect to curting conditions. The effect of stringth development is investigated for curing conditions when silicic wastes of 10 percent of cement-binder ratios is containde. Comparision on compressive strength of normal concrete and concrete containing silicic wastes at 28 day is conducted. The concrete with silicic wastes have larger compressive strength than of normal concrete by about 20 percent, when cured at 80 degree. The wastes concrete using silica sand shows increased strength, fracture toughness, elastic modulus and strain than the normal concrete, although the silicic wastes concrete could be able to satisfy the generally required strength for conventional concrete structures.

  • PDF