Communications for Statistical Applications and Methods
/
v.31
no.3
/
pp.309-322
/
2024
Identifying algae in water is important for managing algal blooms which have great impact on drinking water supply systems. There have been various microscopic approaches developed for algae classification. Many of them are based on the morphological features of algae. However, there have seldom been mathematical frameworks for comparing the shape of algae, represented as a planar continuous curve obtained from an image. In this work, we describe a recent framework for computing shape distance between two different algae based on the elastic metric and a novel functional representation called the square root velocity function (SRVF). We further introduce statistical procedures for multiple shapes of algae including computing the sample mean, the sample covariance, and performing the principal component analysis (PCA). Based on the shape distance, we classify six algal species in watersheds experiencing algal blooms, including three cyanobacteria (Microcystis, Oscillatoria, and Anabaena), two diatoms (Fragilaria and Synedra), and one green algae (Pediastrum). We provide and compare the classification performance of various distance-based and model-based methods. We additionally compare elastic shape distance to non-elastic distance using the nearest neighbor classifiers.
Journal of the Korea Society of Computer and Information
/
v.12
no.2
s.46
/
pp.71-76
/
2007
Object detection process which makes decision on the existence of meaningful objects in a given image is a crucial part of image recognition in computer vision system. Hausdorff distance metric has been used in object detection and shows good results in applications such as face recognition. It defines the dissimilarity between two sets of points and is used to find the object that is most similar to the given model. This paper proposes a Hausdorff distance based detection method that uses directional information of points to improve detection accuracy when the sets of points are derived from edge extraction as is in usual cases. In this method, elastic energy needed to make two directional points coincident is used as a measure of similarity.
The Journal of Korean Academy of Orthopedic Manual Physical Therapy
/
v.3
no.1
/
pp.29-42
/
1997
The theory of plyometric exercise was introduced by Soviet Jump Coach Yuri Verhoshanski in 1967. Plyo comes from the Greek word pleythein, which means to increase. Plyo is the Greek word for "more", while metric means "to measure". The practical definition of plyometrics is a quick powerful movement involving a prestretching or countermovement that activates the stretch-shortening cycle. The purpose of plyometric training is to heighten the excitability of the nervous system for improved reactive ability of the neuromuscular system. The success of plyometric exercise is based on the utilization of the serial elastic properties and stretch-reflex properties of the muscle.
Communications for Statistical Applications and Methods
/
v.31
no.5
/
pp.601-612
/
2024
A functional clustering analysis is a crucial machine learning technique in functional data analysis. Many functional clustering methods have been developed to enhance clustering performance. Moreover, due to the phase variability between functions, elastic functional clustering methods, such as applying the Fisher-Rao metric, which can manage phase variation during clustering, have been developed to improve model performance. However, aligning functions without considering the phase variation can distort functional information because phase variation can be a natural characteristic of functions. Hence, we propose a state-of-the-art functional hierarchical clustering that can manage phase and amplitude variations of functional data. This approach is based on the phase and amplitude separation method using the norm-preserving time warping of functions. Due to its invariance property, this representation provides robust variability for phase and amplitude components of functions and improves clustering performance compared to conventional functional hierarchical clustering models. We demonstrate this framework using simulated and real data.
International Journal of Advanced Culture Technology
/
v.10
no.4
/
pp.499-510
/
2022
This study examines the reporting factors of crime against business in Korea and proposes a corresponding predictive model using machine learning. While many previous studies focused on the individual factors of theft victims, there is a lack of evidence on the reporting factors of crime against a business that serves the public good as opposed to those that protect private property. Therefore, we proposed a crime prevention model for the willingness factor of theft reporting in businesses. This study used data collected through the 2015 Commercial Crime Damage Survey conducted by the Korea Institute for Criminal Policy. It analyzed data from 834 businesses that had experienced theft during a 2016 crime investigation. The data showed a problem with unbalanced classes. To solve this problem, we jointly applied the Synthetic Minority Over Sampling Technique and the Tomek link techniques to the training data. Two prediction models were implemented. One was a statistical model using logistic regression and elastic net. The other involved a support vector machine model, tree-based machine learning models (e.g., random forest, extreme gradient boosting), and a stacking model. As a result, the features of theft price, invasion, and remedy, which are known to have significant effects on reporting theft offences, can be predicted as determinants of such offences in companies. Finally, we verified and compared the proposed predictive models using several popular metrics. Based on our evaluation of the importance of the features used in each model, we suggest a more accurate criterion for predicting var.
The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.
Journal of the Computational Structural Engineering Institute of Korea
/
v.28
no.4
/
pp.409-415
/
2015
For the design of Concrete-Filled Steel Tube(CFST) columns, the outside diameter D to the steel tube thickness t ratio(D/t ratio) is limited to prevent the local buckling of steel tubes. Each design code proposes the respective model to compute the maximum D/t ratio using the yield strength of steel $f_y$ or $f_y$ and the elastic modulus of steel E. Considering the uncertainty in $f_y$ and E, the reliability index ${beta}$ for the local buckling of a CFST section can be calculated by formulating the limit state function including the maximum D/t models. The resulted ${beta}$ depends on the maximum D/t model used for the reliability analysis. This variability in reliability analysis is due to ambiguity in choosing computational models and it is called as "modelling uncertainty." This uncertainty can be considered as "non-specificity" of an epistemic uncertainty and modelled by constructing possibility distribution functions. In this study, three different computation models for the maximum D/t ratio are used to conduct reliability analyses for the local buckling of a CFST section and the reliability index ${beta}$ will be computed respectively. The "non-specific ${beta}s$" will be modelled by possibility distribution function and a metric, degree of confirmation, is measured from the possibility distribution function. It is shown that the degree of confirmation increases when ${beta}$ decreases. Conclusively, a new set of reliability indices associated with a degree of confirmation is determined and it is allowed to decide reliability index for the local buckling of a CFST section with an acceptable confirmation level.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.