• Title/Summary/Keyword: elastic material

검색결과 2,396건 처리시간 0.02초

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

형상학적 변수에 따른 다공성 구조의 가변탄성계수를 기반으로 한 추간체유합보형재의 임상적 안전성 평가 (Clinical Safety Evaluation of Interbody Fusion Cage Based on Tunable Elastic Modulus of the Cellular Structure According to the Geometrical Variables)

  • 김성진;이용경;최재혁;홍영기;김정성
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권5호
    • /
    • pp.158-164
    • /
    • 2019
  • The interbody fusion cage used to replace the degenerative intervertebral disc is largely composed of titanium-based biomaterials and biopolymer materials such as PEEK. Titanium is characterized by osseointergration and biocompatibility, but it is posed that the phenomenon such as subsidence can occur due to high elastic modulus versus bone. On the other hand, PEEK can control the elastic modulus in a similar to bone, but there is a problem that the osseointegration is limited. The purpose of this study was to implement titanium material's stiffness similar to that of bone by applying cellular structure, which is able to change the stiffness. For this purpose, the cellular structure A (BD, Body Diagonal Shape) and structure B (QP, Quadral Pod Shape) with porosity of 50%, 60%, 70% were proposed and the reinforcement structure was suggested for efficient strength reinforcement and the stiffness of each model was evaluated. As a result, the stiffness was reduced by 69~93% compared with Ti6Al4V ELI material, and the stiffness most similar to cortical bone is calculated with the deviation of about 12% in the BD model with 60% porosity. In this study, the interbody fusion cage made of Ti6Al4V ELI material with stiffness similar to cortical bone was implementing by applying cellular structure. Through this, it is considered that the limitation of the metal biomaterial by the high elastic modulus may be alleviated.

Effect of compressible membrane's nonlinear stress-strain behavior on spiral case structure

  • Zhang, Qi-Ling;Wu, He-Gao
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.73-93
    • /
    • 2012
  • With an active structural involvement in spiral case structure (SCS) that is always the design and research focus of hydroelectric power plant (HPP), the compressible membrane sandwiched between steel spiral case and surrounding reinforced concrete was often assumed to be linear elastic material in conventional design analysis of SCS. Unfortunately considerable previous studies have proved that the foam material serving as membrane exhibits essentially nonlinear mechanical behavior. In order to clarify the effect of membrane (foam) material's nonlinear stress-strain behavior on SCS, this work performed a case study on SCS with a compressible membrane using the ABAQUS code after a sound calibration of the employed constitutive model describing foam material. In view of the successful capture of fitted stress-strain curve of test by the FEM program, we recommend an application and dissemination of the simulation technique employed in this work for membrane material description to structural designers of SCS. Even more important, the case study argues that taking into account the nonlinear stress-strain response of membrane material in loading process is definitely essential. However, we hold it unnecessary to consider the membrane material's hysteresis and additionally, employment of nonlinear elastic model for membrane material description is adequate to the structural design of SCS. Understanding and accepting these concepts will help to analyze and predict the structural performance of SCS more accurately in design effort.

열-탄성계를 고려한 엑추에이터 위상 최적설계 (Topology Optimization of Actuator for Thermo-Elastic Systems)

  • 임오강;김대우;최은호
    • 한국전산구조공학회논문집
    • /
    • 제20권6호
    • /
    • pp.683-690
    • /
    • 2007
  • 위상 최적화 기술은 제품의 초기단계의 개념설계에 유용한 기술이며, 주로 구조물의 탄성을 고려한 분야를 중심으로 개발되었다. 그러나 일반적인 기계의 정밀도가 향상됨에 따라 열적인 영향을 함께 고려할 경우가 많아지게 되어, 열과 탄성계를 동시에 고려하는 위상 최적설계가 필요하다. 본 연구에서 균질화법을 이용하여 열-탄성계를 고려한 위상 최적설계를 해석하였다. 열-탄성 문제에서는 열전달 해석과 구조해석을 고려하는 문제이므로 열전달 재료 물성치와 구조 재료 물성치를 함께 사용하였다. 가동에너지를 기계적인 변위 또는 응력으로 변환하는 트랜스듀서인 액츄에이터의 설계에 적용하였으며, 열계와 탄성계 그리고 열-탄성계를 동시에 해석한 설계 결과를 얻었다. 얻어진 각각의 결과를 동일한 하중조건으로 재해석한 결과, 열-탄성계를 고려하였을 경우가 각각의 계를 고려했을 경우보다 개선된 성능을 가진다.

탄성변형으로 인한 틸팅패드 저널베어링의 예압 변화 (Elastic Deformation Induced Preload Change in Tilting Pad Journal Bearing)

  • 이동현;서준호
    • Tribology and Lubricants
    • /
    • 제39권3호
    • /
    • pp.102-110
    • /
    • 2023
  • This study aims to quantify the variation in the performance of a tilting pad journal bearing (TPJB) owing to the elastic deformation of its pad. To this end, we first defined a parameter, "elastic preload", and predicted the changes in the performance of the TPJB, as a function of the preload amount. We used the iso-viscosity Reynolds equation, which ignores the temperature rise due to viscous shear in thin films, and the resultant thermal deformation of the bearing structure. We employed a three-dimensional finite element model to predict the elastic deformation of the bearing pad, and a transient analysis, to converge to a static equilibrium condition of the flexible pads and journal. Conducting a modal coordinate transformation helped us avoid heavy computational issues arising from a mesh refinement in the three-dimensional finite element pad model. Moreover, we adopted the Hertzian contact model to predict the elastic deformation at the pivot location. With the aforementioned overall strategy, we predicted the performance changes owing to the elastic deformation of the pad under varying load conditions. From the results, we observed an increase in the preload due to the pad elastic deformation.

A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions

  • Rabhi, Mohamed;Benrahou, Kouider Halim;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Adda Bedia, E.A.;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.119-132
    • /
    • 2020
  • In this study a new innovative three unknowns trigonometric shear deformation theory is proposed for the buckling and vibration responses of exponentially graded sandwich plates resting on elastic mediums under various boundary conditions. The key feature of this theoretical formulation is that, in addition to considering shear deformation effect, it has only three unknowns in the displacement field as in the case of the classical plate theory (CPT), contrary to five as in the first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Material characteristics of the sandwich plate faces are considered to vary within the thickness direction via an exponential law distribution as a function of the volume fractions of the constituents. Equations of motion are obtained by employing Hamilton's principle. Numerical results for buckling and free vibration analysis of exponentially graded sandwich plates under various boundary conditions are obtained and discussed. Verification studies confirmed that the present three -unknown shear deformation theory is comparable with higher-order shear deformation theories which contain a greater number of unknowns.

The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams

  • Yahiaoui, Mohammed;Tounsi, Abdelouahed;Fahsi, Bouazza;Bouiadjra, Rabbab Bachir;Benyoucef, Samir
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.53-66
    • /
    • 2018
  • This paper presents an analysis of the bending, buckling and free vibration of functionally graded sandwich beams resting on elastic foundation by using a refined quasi-3D theory in which both shear deformation and thickness stretching effects are included. The displacement field contains only three unknowns, which is less than the number of parameters of many other shear deformation theories. In order to homogenize the micromechanical properties of the FGM sandwich beam, the material properties are derived on the basis of several micromechanical models such as Tamura, Voigt, Reuss and many others. The principle of virtual works is used to obtain the equilibrium equations. The elastic foundation is modeled using the Pasternak mathematical model. The governing equations are obtained through the Hamilton's principle and then are solved via Navier solution for the simply supported beam. The accuracy of the proposed theory can be noticed by comparing it with other 3D solution available in the literature. A detailed parametric study is presented to show the influence of the micromechanical models on the general behavior of FG sandwich beams on elastic foundation.

초탄성 재료의 변형률에너지함수를 이용한 LRB받침의 유한요소해석 (Finite Element Analysis of Lead Rubber Bearing by Using Strain Energy Function of Hyper-Elastic Material)

  • 조성국;박웅기;윤성민
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.361-374
    • /
    • 2016
  • 이 연구는 대표적인 면진장치인 납고무베어링(LRB)의 유한요소모델의 신뢰성을 향상시키기 위하여 주재료인 고무의 재료특성에 대하여 연구하였다. 고무는 일반적인 탄성재료와는 달리 대변형, 비선형특성을 가지는 초탄성 재료이다. 본 연구에서는 고무를 초탄성 재료로 가정하고 그의 재료특성을 변형률에너지함수로 표현하여 LRB의 유한요소모델을 개발하였다. 연구를 위하여 여러 변형률에너지함수 중 몇 가지를 선별하고 이를 이용하여 고무의 재료특성을 예측하였다. 변형률에너지함수를 이용하여 결정된 고무의 재료특성과 표준적인 납의 재료특성을 이용하여 LRB의 유한요소모델을 개발하고, 수평방향과 수직방향의 힘-변위 관계를 해석하였다. LRB의 유한요소모델을 통하여 해석으로 예측한 수평과 수직방향 강성을 실험결과와 비교함으로써 개발된 유한요소모델의 적합성을 검증하였다.

멱함수 가공경화 모델을 이용한 복합실린더의 자긴가공해석 (Autofrettage Analysis of Compound Cylinder with Power Function Strain Hardening Model)

  • 박재현;이영신;심우성;김재훈;차기업;홍석균
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.488-495
    • /
    • 2008
  • In order to achieve long fatigue lifetimes for cyclically pressurized thick cylinders, multi-layered compound cylinder has been proposed. Such compound cylinder involves a shrink-fit procedure incorporating a monobloc tube which has previously undergone autofrettage. The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage mo dels are based on different simplified material strain-hardening models, which is assumed that combination of linear strain-hardenig and power strain-hardening model. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material was proposed. The model was obtained using the von Mises yield criterion and plane strain condition. The tensile-compressive stress-strain curve was obtained by experiment. The parameters needed in the model were determined by fitting the actual tensile-compressive curve of the material. Finally, strain- hardening model was compared with elastic-perfectly plastic model.

TIME-DEPENDENT FRACTURE OF ARTICULAR CARTILAGE: PART 1 - THEORY & VALIDATION

  • 문무성
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.27-33
    • /
    • 1995
  • A time-dependent large deformation fracture theory is developed for application to soft biological tissues. The theory uses the quasilinear viscoelastic theory of Fung, and particularizes it to constitutive assumptions on polyvinyl-chloride (PVC) (Part I) and cartilage (Part II). This constitutive theory is used in a general viscoelastic theory by Christensen and Naghdi and an energy balance to develop an expression for the fracture toughness of the materials. Experimental methods are developed for measuring the required constitutive parameters and fracture data for the materials. Elastic stress and reduced relaxation functions were determined using tensile and shear tests at high loading rates with rise times of 25-30 msec, and test times of 150 sec. The developed method was validated, using an engineering material, PVC to separate the error in the testing method from the inherent variation of the biological tissues. It was found that the the proposed constitutive modeling can predict the nonlinear stress-strain and the time-dependent behavior of the material. As an approximation method, a pseudo-elastic theory using the J-integral concept, assuming that the material is a time-independent large deformation elastic material, was also developed and compared with the time-dependent fracture theory. For PVC. the predicted fracture toughness is $1.2{\pm}0.41$ and $1.5{\pm}0.23\;kN/m$ for the time-dependent theory and the pseudo-elastic theory, respectively. The methods should be of value in quantifying fracture properties of soft biological tissues. In Part II, an application of the developed method to a biological soft tissue was made by using bovine humeral articular cartilage.

  • PDF