• Title/Summary/Keyword: elastic interaction

Search Result 499, Processing Time 0.025 seconds

Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.69-82
    • /
    • 2020
  • In this paper, a new explicit analytical formula is derived for the critical buckling load of Double Walled Carbon Nanotubes (DWCNTs) embedded in Winkler elastic medium without taking into account the effects of the nonlocal parameter, which indicates the effects of the surrounding elastic matrix combined with the intertube Van der Waals (VdW) forces. Furthermore, we present a model which predicts that the critical axial buckling load embedded in Winkler, Pasternak or Kerr elastic medium under axial compression using the nonlocal Donnell shell theory, this model takes into account the effects of internal small length scale and the VdW interactions between the inner and outer nanotubes. The present model predicts that the critical axial buckling load of embedded DWCNTs is greater than that without medium under identical conditions and parameters. We can conclude that the embedded DWCNTs are less susceptible to axial buckling than those without medium.

Thermal postbuckling of imperfect Reissner-Mindlin plates with two free side edges and resting on elastic foundations

  • Shen, Hui-Shen
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.643-658
    • /
    • 1998
  • A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to uniform or nonuniform tent-like temperature loading and resting on an elastic foundation. The plate is assumed to be simply supported on its two opposite edges and the two side edges remain free. The initial geometrical imperfection of the plate is taken into account. The formulation are based on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including plate-foundation interaction and thermal effects. The analysis uses a mixed Galerkin-perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick plates resting on Pasternak-type or softening nonlinear elastic foundations from which results for Winker elastic foundations follow as a limiting case. Typical results are presented in dimensionless graphical form.

Dynamic response of an elastic bridge loaded by a moving elastic beam with a finite length

  • Cojocaru, Eugenia C.;Irschik, Hans
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.343-363
    • /
    • 2010
  • The present paper is concerned with vibrations of an elastic bridge loaded by a moving elastic beam of a finite length, which is an extension of the authors' previous study where the second beam was modeled as a semi-infinite beam. The second beam, which represents a train, moves with a constant speed along the bridge and is assumed to be connected to the bridge by the limiting case of a rigid interface such that the deflections of the bridge and the train are forced to be equal. The elastic stiffness and the mass of the train are taken into account. The differential equations are developed according to the Bernoulli-Euler theory and formulated in a non-dimensional form. A solution strategy is developed for the flexural vibrations, bending moments and shear forces in the bridge by means of symbolic computation. When the train travels across the bridge, concentrated forces and moments are found to take place at the front and back side of the train.

Formulation of the equation of motion for flexible robotics arms by using the finite element and modal reduction method (유한요소및 모달감소법을 이용한 유연로보트팔 운동방정식의 정식화)

  • 김창부;유영선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.533-538
    • /
    • 1991
  • In the design and operation of robot arms with flexible links, the equations of motion are required to exactly model the interaction between rigid motion and elastic motion and to be formulated efficiently. Thus, the flexible link is represented on the basis of the D-H rigid link representation to measure the elastic deformation. The equations of motion of robot arms, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated by using F.E.M. to model complex shaped links systematically and by eliminating elastic mode of higher order that does not largely affect motion to reduce the number of elastic degree of freedom. Finally, presented is the result of simulation to flexible robotic arm whose joints are controlled by direct or PD control,

  • PDF

Influence of a soft FGM interlayer on contact stresses under a beam on an elastic foundation

  • Aizikovich, Sergey M.;Mitrin, Boris I.;Seleznev, Nikolai M.;Wang, Yun-Che;Volkov, Sergey S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.613-625
    • /
    • 2016
  • Contact interaction of a beam (flexible element) with an elastic half-plane is considered, when a soft inhomogeneous (functionally graded) interlayer is present between them. The beam is bent under the action of a distributed load applied to the surface and a reaction of the elastic interlayer and the half-space. Solution of the contact problem is obtained for different values of thickness and parameters of inhomogeneity of the layer. The interlayer is assumed to be significantly softer than the underlying half-plane; case of 100 times difference in Young's moduli is considered as an example. The influence of the interlayer thickness and gradient of elastic properties on the distribution of the contact stresses under the beam is studied.

Analysis of circular plates on two - parameter elastic foundation

  • Saygun, Ahmet;Celik, Mecit
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.249-267
    • /
    • 2003
  • In this study, circular plates subjected to general type of loads and supported on a two-parameter elastic foundation are analysed. The stiffness, elastic bedding and soil shear effect matrices of a fully compatible ring sector plate element, developed by Saygun (1974), are obtained numerically assuming variable thickness of the element. Ring sector soil finite element is also defined to determine the deflection of the soil surface outside the domain of the plate in order to establish the interaction between the plate and the soil. According to Vallabhan and Das (1991) the elastic bedding (C) and shear parameters ($C_T$) of the foundation are expressed depending on the elastic constants ($E_s$, $V_s$) and the thickness of compressible soil layer ($H_s$) and they are calculated with a suitable iterative procedure. Using ring sector elements presented in this paper, permits the generalization of the loading and the boundary conditions of the soil outside the plate.

Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory

  • Bensattalah, Tayeb;Zidour, Mohamed;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.7 no.3
    • /
    • pp.163-174
    • /
    • 2018
  • This article studies the free and forced vibrations of the carbon nanotubes CNTs embedded in an elastic medium including thermal and dynamic load effects based on nonlocal Euler-Bernoulli beam. A Winkler type elastic foundation is employed to model the interaction of carbon nanotube and the surrounding elastic medium. Influence of all parameters such as nonlocal small-scale effects, high temperature change, Winkler modulus parameter, vibration mode and aspect ratio of short carbon nanotubes on the vibration frequency are analyzed and discussed. The non-local Euler-Bernoulli beam model predicts lower resonance frequencies. The research work reveals the significance of the small-scale coefficient, the vibrational mode number, the elastic medium and the temperature change on the non-dimensional natural frequency.

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi;Mohammadhossein Goudarzfallahi;Ali Alinia Ziazi
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.

Elastic-plastic formulation for concrete encased sections interaction diagram tracing

  • Fenollosa, Ernesto;Gil, Enrique;Cabrera, Ivan;Vercher, Jose
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.861-876
    • /
    • 2015
  • Composite sections design consists on checking that the point defined by axial load and bending moment keeps included within the surface enclosed by the section interaction curve. Eurocode 4 suggests a method for tracing this diagram based on the plastic stress distribution method. However curves obtained according to this criterion overvalue concrete encased sections bearing capacity, especially when axial force comes with high bending moment values, so a correction factor is required. This article proposes a method for tracing this diagram based on the strain compatibility method. When stresses on the section are integrated by considering the Navier hypothesis, the use of the materials nonlinear constitutive equations provides curves much more adjusted to reality. This process requires the use of rather complex software which might reveal as too complex for practitioners. Preserving the same criteria of an elastic-plastic stress distribution, this article presents alternative expressions to obtain the failure internal forces in five significant points of the interaction diagram having considered five different positions of the neutral axis. These expressions are simply enough for their practical application. Concordance of curves traced strictly relying on these five points with those obtained by computer assisted stress integration considering the strain compatibility method and even with Eurocode 4 weighted curves will be presented for three different cross-sections and two different concrete strengths, revealing very good results.

Elastic local buckling of thin-walled elliptical tubes containing elastic infill material

  • Bradford, M.A.;Roufegarinejad, A.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.143-156
    • /
    • 2008
  • Elliptical tubes may buckle in an elastic local buckling failure mode under uniform compression. Previous analyses of the local buckling of these members have assumed that the cross-section is hollow, but it is well-known that the local buckling capacity of thin-walled closed sections may be increased by filling them with a rigid medium such as concrete. In many applications, the medium many not necessarily be rigid, and the infill can be considered to be an elastic material which interacts with the buckling of the elliptical tube that surrounds it. This paper uses an energy-based technique to model the buckling of a thin-walled elliptical tube containing an elastic infill, which elucidates the physics of the buckling phenomenon from an engineering mechanics basis, in deference to a less generic finite element approach to the buckling problem. It makes use of the observation that the local buckling in an elliptical tube is localised with respect to the contour of the ellipse in its cross-section, with the localisation being at the region of lowest curvature. The formulation in the paper is algebraic and it leads to solutions that can be determined by implementing simple numerical solution techniques. A further extension of this formulation to a stiffness approach with multiple degrees of buckling freedom is described, and it is shown that using the simple one degree of freedom representation is sufficiently accurate for determining the elastic local buckling coefficient.