• Title/Summary/Keyword: elastic deflection

Search Result 410, Processing Time 0.026 seconds

A Study on the Ultimate Strength of a Ship's Plate According to Initial Deflection Pattern in used Arc-Length Method (호장증분법에 의한 선체판의 초기처짐형상에 따른 최종강도에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.21-26
    • /
    • 2003
  • Develop and need design application of carbon sex design concept that consider plasticity in elastic design concept until now. To Place that is representative construction of hull in this research rain deflection pattern analysis technique and grandeur increment method such as general load type increment law and displacement type increment law and Newton-Raphson method increment body law to use jointly compare. Specialty. through analysis by initial deflection pattern. examined closely carbon set conduct of place by initial deflection pattern. Applied thin plate structure which receive compressive load used ANSYS that analysis method is mediocrity finite element analysis program to save complicated conduct that effect that conduct after initial buckling and conduct after secondary buckling get in the whole construction is very big and such and grandeur increment law presumes complicated rain fan shape conduct in bifurcation point specially.

  • PDF

Bending Creep of Glulam and Bolted Glulam under Changing Relative Humidity

  • PARK, Junchul;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.676-684
    • /
    • 2020
  • This study was carried out in order to evaluate the bending creep deflection of glulams and bolted glulams beam-to-beam connection with steel-gusset plates and bolts under changing relative humidity. The two types of glulam beams (130 mm in width, 175 mm in thickness, and 3000 mm in length) used in this study were made from domestic larch and composed of seven layers. The gussets were made of 8-mm-thick steel plates. Creep testing was conducted under constant loads in an uncontrolled environment. The test was carried out in a room that was well ventilated through a window. The creep test specimens were loaded for 33,000 hours. A bending creep test for the glulams was conducted through four-point loading. The applied stresses were 20% and 30% of the MOR in the static bending test for the glulam and bolted glulam, respectively. After 33,000 hours, the creep deflection of the glulam at a 20% stress level increased by 39% to 99%, while the creep deflection of the glulam at a 30% stress level increased by 27% to 67%, as compared with instantaneous elastic deflection. The relative creep increased during autumn and winter, and recovered during spring and summer. The relative creep of the bolted glulams was changed abruptly by loading up to 5,000 hours, but stabilized after 5,000 hours, and then gradually increased until 33,000 hours. The relative creep of the bolted glulam increased 2.11 times on average after 33,000 hours.

Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory

  • Laoufi, Imene;Ameur, Mohammed;Zidi, Mohamed;Bedia, El Abbes Adda;Bousahla, Abdelmoumen Anis
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.889-911
    • /
    • 2016
  • Using the hyperbolic shear deformation plate model and including plate-foundation interaction (Winkler and Pasternak model), an analytical method in order to determine the deflection and stress distributions in simply supported rectangular functionally graded plates (FGP) subjected to a sinusoidal load, a temperature and moisture fields. The present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Materials properties of the plate (elastic, thermal and moisture expansion coefficients) are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. Numerical examples are presented and discussed for verifying the accuracy of the present theory in predicting the bending response of FGM plates under sinusoidal load and a temperature field as well as moisture concentration. The effects of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratio, ratio of elastic coefficients (ceramic-metal) and three distributions for both temperature and moisture on deflections and stresses are investigated.

Elastic buckling of end-loaded, tapered, cantilevered beams with initial curvature

  • Wilson, James F.;Strong, Daniel J.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.257-268
    • /
    • 1997
  • The elastic deflections and Euler buckling loads are investigated for a class of tapered and initially curved cantilevered beams subjected to loading at the tip. The beam's width increases linearly and its depth decreases linearly with the distance from the fixed end to the tip. Unloaded, the beam forms a circular are perpendicular to the axis of bending. The beam's deflection responses, obtained by solving the differential equations in closed form, are presented in terms of four nondimensional system parameters: taper ratio ${\kappa}$, initial shape ratio ${\Delta}_0$, end load ratio f, and load angle ${\theta}$. Laboratory measurements of the Euler buckling loads for scale models of tapered initially straight, corrugated beams compared favorably with those computed from the present analysis. The results are applicable to future designs of the end structures of highway guardrails, which can be designed to give the appropriate balance between the capacity to deflect a nearly head-on vehicle back to its right-of-way and the capacity to buckle sufficiently that penetration of the vehicle may be averted.

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Support (탄성지지된 3경간 철근콘크리트 교량의 간단한 진동해석법)

  • Kim, Duk-Hyun;Han, Bong-Koo
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2004
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. The concrete slab is considered as a special orthotropic plate. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper, The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

Analytical solutions for static bending of edge cracked micro beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.579-599
    • /
    • 2016
  • In this study, static bending of edge cracked micro beams is studied analytically under uniformly distributed transverse loading based on modified couple stress theory. The cracked beam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-beams connected through a massless elastic rotational spring. The deflection curve expressions of the edge cracked microbeam segments separated by the rotational spring are determined by the Integration method. The elastic curve functions of the edge cracked micro beams are obtained in explicit form for cantilever and simply supported beams. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the elastic deflections of the edge cracked micro beams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and some typical boundary conditions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked microbeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Pressure Analysis of Sterntube after Bush Bearing Considering Elastic Deflection of Misaligned Journal and Partial Slope of Bearing Bush (탄성 변형된 저어널의 편심과 베어링 부시의 부분경사를 고려한 선미관 후부 베어링의 압력분포 해석)

  • Choung, Joon-Mo;Choe, Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.666-674
    • /
    • 2007
  • It is very important to estimate static squeezing pressure distributions for lining material of sterntube after bearing at dry dock stage since the maximum squeezing pressure value can be one of the significant characteristics representing coming navigation performances of the propulsion system. Moderate oil film pressure between lining material and propulsion shaft is also essential for safe ship service. In this paper, Hertz contact theory is explained to derive static squeezing pressure. Reynolds equation simplified from Navier-Stokes equation is centrally differentiated to numerically obtain dynamic oil film pressures. New shaft alignment technology of nonlinear elastic multi-support bearing elements is also used in order to obtain external forces acting on lining material of bearing. For 300K DWT class VLCC with synthetic bush of sterntube after bearing, static squeezing pressures are calculated using derived external forces and Hertz contact theory. Optimum partial slope of the after bush is presented by parametric shaft alignment analyses. Dynamic oil film pressures are comparatively evaluated for partially bored and unbored after bush. Finally it is proved that the partial slope can drastically reduce oil film pressure during engine running.

Vibration analysis of special orthortopic plate with free edges supported on elastic foundation and with a pair of opposite edges under axial forces (탄성기초에 지지되고 양단 축하중을 받는 특별직교 이방성 판의 진동해석)

  • 김덕현;원치문;정경일;박정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.327-334
    • /
    • 1998
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and toll.or structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the special orthotropic plates with free edges supported on elastic foundation and with a pair of opposite edges under axial forces is presented. Such plates represent the concrete highway slab and hybrid composite pavement of bridges. The reinforced concrete slab can be assumed as a special orthotropic plate, as a close approximation. The highway slab is supported on elastic foundation, with free boundaries. Sometimes, the pair of edges perpendicular to the traffic direction may be subject to the axial forces. The plate is subject to the concentrated load/loads, in the form of traffic loads, or the test equipments. Any method nay be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation, the aspect ratio of the plate, and the magnitudes of the axial forces and the concentrated attached mass on the plate, on the natural frequency is thoroughly studied.

  • PDF

An analysis of the farm silo supported by ground (地盤과 構造物사이의 相互作用을 考慮한 農業用 사이로의 解析에 관한 硏究(Ⅰ) - 第 1 報 模型 및 프로그램의 開發 -)

  • Cho, Jin-Goo;Cho, Hyun-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.38-46
    • /
    • 1985
  • The reinforced concrete farm silos on the elastic foundatin are widely used in agricultural engineering because of their superior structural performance, economy and attractive appearance. Various methods for the analysis and design of farm silo, such as the analytical method, the finite difference method, and the finite element methods, can be used. But the analytical procedure can not be applied for the intricate conditions in practice. Therefore lately the finite element method has been become in the structural mechanics. In this paper, a method of finite element analysis for the cylindrical farm silo on ffness matrix for the elastic foundation governed by winkler's assumption. A complete computer programs have been developed in this paper can be applicable not only to the shell structures on elastic foundation but also to the arbitrary three dimensional structures. Assuming the small deflection theory, the membrane and plate bending behaviours of flat plate element can be assumed mutually uncoupled. In this case, the element has 5 degrees of freedom per node when defined in the local coordinate system. However, when the element properties are transformed to the global coordinates for assembly, the 6th degree of freedom should be considered. A problem arises in this procedure the resultant stiffness in the 6th degree of freedom at this node will be zero. But this singularity of the stiffness matrix can be eliminated easily by merely replacing the zero diagonal by dummy stiffness.

  • PDF

Assessment of negative Poisson's ratio effect on thermal post-buckling of FG-GRMMC laminated cylindrical panels

  • Shen, Hui-Shen;Xiang, Y.
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.423-435
    • /
    • 2021
  • This paper examines the thermal post-buckling behaviors of graphene-reinforced metal matrix composite (GRMMC) laminated cylindrical panels which possess in-plane negative Poisson's ratio (NPR) and rest on an elastic foundation. A panel consists of GRMMC layers of piece-wise varying graphene volume fractions to obtain functionally graded (FG) patterns. Based on the MD simulation results, the GRMMCs exhibit in-plane NPR as well as temperature-dependent material properties. The governing equations for the thermal post-buckling of panels are based on the Reddy's third order shear deformation shell theory. The von Karman nonlinear strain-displacement relationship and the elastic foundation are also included. The nonlinear partial differential equations for GRMMC laminated cylindrical panels are solved by means of a singular perturbation technique in associate with a two-step perturbation approach and in the solution process the boundary layer effect is considered. The results of numerical investigations reveal that the thermal post-buckling strength for (0/90)5T GRMMC laminated cylindrical panels can be enhanced with an FG-X pattern. The thermal post-buckling load-deflection curve of 6-layer (0/90/0)S and (0/90)3T panels of FG-X pattern are higher than those of 10-layer (0/90/0/90/0)S and (0/90)5T panels of FG-X pattern.