• 제목/요약/키워드: elastic constraint

검색결과 126건 처리시간 0.022초

유전자 알고리즘을 이용한 비선형 탄성 최적설계 (Nonlinear Elastic Optimal Design Using Genetic Algorithm)

  • 김승억;마상수
    • 한국강구조학회 논문집
    • /
    • 제15권2호
    • /
    • pp.197-206
    • /
    • 2003
  • 본 논문에서는 유전자 알고리즘을 이용한 비선형 탄성 최적설계 방법을 제시하였다. 제안한 비선형 탄성해석은 종래 설계의 단점 즉 탄성해석 후 비선형 효과를 고려하기 위하여 $B_1$, $B_2$ 계수를 사용하는 불합리성을 극복하였다. 유전자 알고리즘은 다윈(Darwin)의 적자생존의 개념을 기본으로 선택, 교배 및 돌연변이라는 세 가지 연산을 수행함으로써 최적설계에 필요한 설계변수 즉 부재 단면을 형성하여, 제약조건을 모두 만족하는 최소 구조물 중량을 제공하는 설계변수를 선택하면서 최적설계를 수행하였다. 목적함수로는 구조물의 총중량을 사용하였으며, 제약조건식으로는 하중저항능력, 사용성 및 연성도를 사용도를 사용하여 최적설계를 수행하였다. 2차원 강뼈대 구조물, 3차원 강뼈대 구조물, 그리고 3차원 강아치교의 설계예제를 수행하였다.

STIFFNESS AND POROSITY EVALUATION USING FIELD VELOCITY RESISTIVITY PROBE

  • Lee, Jong-Sub;Yoon, Hyung-Koo;Choi, Yong-Kyu
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.24-30
    • /
    • 2010
  • The void ratio and elastic moduli are design parameters used in geotechnical engineering to understand soil behavior. Elastic and electromagnetic waves have been used to evaluate the various soil characteristics due to high resolution. The objective of this study is to evaluate the void ratio and elastic moduli based on elastic wave velocities and electrical resistivity. The Field Velocity Resistivity Probe (FVRP) is developed to obtain the elastic and electromagnetic wave profiles of soil during penetration. The Piezoelectric Disk Elements (PDE) and Bender Elements (BE) are used as transducers for measuring the elastic wave velocities such as compressional and shear wave velocities. The Electrical Resistivity Probe (ERP) is also installed for capturing the electrical resistivity profile. The application test is carried out on the southern coast of the Korean peninsula. The field tests are performed at a depth of 6~20 m, at 10 cm intervals for measuring elastic wave velocities and at 0.5cm intervals for measuring electrical resistivity. The elastic moduli such as constraint and shear moduli are calculated by using measured elastic wave velocities. The void ratios are also evaluated based on the elastic wave velocities and the electrical resistivity. Furthermore, the converted void ratios by using FVRP are compared with the volumetric void ratio obtained by a standard consolidation test. The comparison shows that the void ratios based on the FVPR match the volume based void ratio well. This study suggests that the FVRP may be a useful device to effectively determine the elastic moduli and void ratio in the field.

  • PDF

동일두께의 CT 시편에서 구속효과가 파괴저항곡선에 미치는 영향 (Effect of Crack Tip Constraint on the Fracture Resistance Curve in CT Specimen with Same Thickness)

  • 조연제;장윤석;석창성;김영진
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.529-539
    • /
    • 1996
  • Fracture resistance(J-R) curves, which are used for elastic-plastic fracture mechanics analyses, are known to be dependent on the specimen geometry. The objective of this paper is to investigate the effect of crack tip constraint an the J-R curves in CT specimens. Fracture toughness tests on CT specimens with varying planform size were performed and test results showed that the J-R curves were increased with an increase in the planform size. Finite element analysis were also performed and the numerical results showed that this experimental phenomenon was probably due to the relaxation of crack tip constraint resulting from the stress triaxiality.

구속상태를 고려한 반타원 표면균열의 파손평가선도 (Failure Assessment Diagrams of Semi-Elliptical Surface Crack with Constraint Effect)

  • 서헌;한태수;이형일
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2022-2032
    • /
    • 1999
  • In recent years, the subject of remaining life assessment has drawn considerable attention in the power generation industry. In power generation systems a variety of structural components, such as steam pipes, turbine rotors, and superheater headers, typically operate at high temperatures and high pressures. Thus a life prediction methodology accounting for fracture and rupture is increasingly needed for these components. For accurate failure assessment, in addition to the single parameter such as K or J-integral used in traditional fracture mechanics, the second parameter like T-stress describing the constraint is needed. The most critical defects in such structures are generally found in the form of semi-elliptical surface cracks in the welded piping-joints. In this work, selecting the structures of surface-cracked plate and straight pipe, we first perform line-spring finite element modeling, and accompanying elastic-plastic finite element analyses. We then present a framework for including constraint effects (T-stress effects) in the R6 failure assessment diagram approach for fracture assessment.

비균질 지반위에 놓여있는 보의 고유진동수 (Natural Frequencies of a Beam on Inhomogeneous Foundation)

  • 김용철
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.69-77
    • /
    • 1992
  • The natural frequencies of a beam on elastic foundation are investigated in the present paper. The inhomogeneous elastic foundation can be modelled as a combination of distributed translational spring, rotational spring, intermediate supports and dampers. The natural frequencies and mode shapes of the system are obtained by using the Galerkin's method, and also compared with the results in the literature. Furthermore, the natural frequencies of the beam with elastically mounted masses, which can be used as vibration absorbers, are obtained by an efficient numerical scheme suggested in the present paper.

  • PDF

탄성지반 위에 놓인 곡선부재의 진동 특성 (Vibration Characteristics of Curved Members Resting on Elastic Foundations)

  • 오상진;박광규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.788-793
    • /
    • 2004
  • The main purpose of this paper is to Investigate the free vibrations of circular curved members resting on nonhomogeneous elastic foundations. The governing differential equations derived in a previous paper are used. The governing equations are solved numerically to obtain frequencies. Hinged-hinged end constraint is considered in numerical examples. The lowest three natural frequencies are calculated over a wide range of non-dimensional system parameters: the foundation rested ratio, the foundation parameter, the horizontal rise to span length ratio, the slenderness ratio, and the width ratio of the contact area between the member and the foundation.

  • PDF

탄성계의 진동제어 (Vibration Control of Elastic Systems)

  • 이상조;하영균;박영필
    • 한국음향학회지
    • /
    • 제7권2호
    • /
    • pp.5-19
    • /
    • 1988
  • 본 논문은 최적조절기, 최적추적제어, 최단시간제어 및 힘상쇄 관측기이론 등을 이용하여 탄성계 진동을 능동적으로 제어하기 위한 제어기 개발에 관한 연구로 탄성계의 모달해석방법을 통하여 작동기의 설치위치, 가중치의 선정 등 각종 파과미터가 제어기의 제어성능에 미치는 영향에 대하여 검토하였다.

  • PDF

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.

Q-응력을 이용한 휜 광폭평판 균열부 구속상태 변화 평가 (Investigation into Crack-Tip Constraint of Curved Wide-Plate using Q-Stress)

  • 이휘승;허남수;김기석;심상훈;조우연
    • 대한기계학회논문집A
    • /
    • 제38권12호
    • /
    • pp.1441-1446
    • /
    • 2014
  • 본 논문에서는 휜 광폭평판의 두께와 폭, 균열길이 그리고 가공경화지수의 변화가 휜 광폭평판의 균열부 구속상태에 미치는 영향을 평가하였다. 이를 위해 5가지의 휜 광폭평판 두께, 3가지의 균열길이, 3가지의 휜 광폭평판 폭 그리고 3가지의 가공경화지수를 고려한 3차원 탄소성 유한요소해석을 수행하였다. Ramberg-Osgood 관계식을 만족하는 비선형 재료로 가정하였으며 균열부 구속상태를 정량화하기 위해서 Q-응력을 이용하였다. 3차원 유한요소해석 결과를 바탕으로 기하학적 형상 및 재료특성에 따른 휜 광폭평판의 Q-응력 변화를 평가하였다. 평가 결과 면외 구속조건에 의한 영향은 면내 구속조건과 밀접한 관계가 있었으며, 면외 구속조건이 면내 구속조건 보다 균열부 구속상태에 더 큰 영향을 미쳤다.

Effect of dissimilar metal SENB specimen width and crack length on stress intensity factor

  • Murthy, A. Ramachandra;Muthu Kumaran, M.;Saravanan, M.;Gandhi, P.
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1579-1586
    • /
    • 2020
  • Dissimilar metal joints (DMJs) are more common in the application of piping system of many industries. A 2- D and 3-D finite element analysis (FEA) is carried out on dissimilar metal Single Edged Notch Bending (DMSENB) specimens fabricated from ferritic steel, austenitic steel and Inconel - 182 alloy to study the behavior of DMJs with constraints by using linear elastic fracture mechanics (LEFM) principles. Studies on DMSENB specimens are conducted with respect to (i) dissimilar metal joint width (DMJW) (geometrical constraints) (5 mm, 10 mm, 20 mm, 30 mm and 50 mm) (ii) strength mismatch (material constraints) and (iii) crack lengths (16 mm, 20 mm and 24 mm) to study the DMJ behavior. From the FEA investigation, it is observed that (i) SIF increases with increase of crack length and DMJWs (ii) significant constraint effect (geometry, crack tip and strength mismatch) is observed for DMJWs of 5 mm and 10 mm (iii) stress distribution at the interfaces of DMSENB specimen exhibits clear indication of strength mismatch (iv) 3-D FEA yields realistic behavior (v) constraint effect is found to be significant if DMJW is less than 20 mm and the ratio of specimen length to the DMJW is greater than 7.4.