• Title/Summary/Keyword: elastic behaviors

Search Result 429, Processing Time 0.026 seconds

A study on the Fracture Mechanism and the Test for Strength Properties of the Granite-Gneiss (화강편마암의 강도특성 실험 및 파괴메카니즘에 관한 연구)

  • 최안식;조만섭;김영석
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.165-172
    • /
    • 2000
  • When tunnels or underground structures are constructed in anisotropic rock mass, designers and constructors have to consider the anisotropic characteristics in rock mass because their physical and mechanical properties are depended on the anisotropic angles(${\beta}$). In this study, therefore, we have first investigated the mechanical behavior of the gneiss specimen from lab. tests, and then have analysed the behavior of specimens for to the transversely isotropic model in elastic medium using the FLAC program. The results of this study were summarized as follows; 1) In the result of the variation tests, in general, the properties of strength were depended on the angle of inclination in spite of the hard rock. And except for the shear strength test, the lowest and peak stress were appeared at 60$^{\circ}$ and 90$^{\circ}$respectively. 2) The results of specimen modeling analysis using FDM well indicated the mechanical behaviors of the specimen of transversely isotropic model.

  • PDF

Effect of TaB2 Addition on the Oxidation Behaviors of ZrB2-SiC Based Ultra-High Temperature Ceramics

  • Lee, Seung-Jun;Kim, Do-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Zirconium diboride (ZrB2) and mixed diboride of (Zr0.7Ta0.3)B2 containing 30 vol.% silicon carbide (SiC) composites were prepared by hot-pressing at $1800^{\circ}C$. XRD analysis identified the high crystalline metal diboride-SiC composites at $1800^{\circ}C$. The TaB2 addition to ZrB2-SiC showed a slight peak shift to a higher angle of 2-theta of ZrB2, which confirmed the presence of a homogeneous solid solution. Elastic modulus, hardness and fracture toughness were slightly increased by addition of TaB2. A volatility diagram was calculated to understand the oxidation behavior. Oxidation behavior was investigated at $1500^{\circ}C$ under ambient and low oxygen partial pressure (pO2~10-8 Pa). In an ambient environment, the TaB2 addition to the ZrB2-SiC improved the oxidation resistance over entire range of evaluated temperatures by formation of a less porous oxide layer beneath the surface SiO2. Exposure of metal boride-SiC at low pO2 resulted in active oxidation of SiC due to the high vapor pressure of SiO (g), and, as a result, it produced a porous surface layer. The depth variations of the oxidized layer were measured by SEM. In the ZrB2-SiC composite, the thickness of the reaction layer linearly increased as a function of time and showed active oxidation kinetics. The TaB2 addition to the ZrB2-SiC composite showed improved oxidation resistance with slight deviation from the linearity in depth variation.

Increasing Effect in Local Buckling Strength of Laminated Composite Plates Stiffened with Closed-section Ribs under Uniaxial Compression (폐단면리브로 보강된 일축압축을 받는 복합적층판의 국부좌굴강도 증가효과)

  • Hwang, Su-Hee;Kim, Yu-Sik;Choi, Byung-Ho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.39-44
    • /
    • 2013
  • This study is aimed to examine the influence of the rotational stiffness of U-shaped ribs on the local buckling behaviors of laminated composite plates. Applying the orthotropic plates with eight layers of the layup $[(0^{\circ})4]s$ and $[(0^{\circ}/90^{\circ})2]s$, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. There is a need to develope a simple design equation to establish the rotational stiffness effect, which could be easily quantified by comparing the theoretical critical stress equation for laminated composite plates with elastic restraints based on the Classical laminated plate theory. Through the parametric numerical studies, it is confirmed that there should clearly exist an increasing effect of local plate buckling strength due to the rotational stiffness by closed-section ribs. An applicable coefficient for practical design should be verified and proposed for future study. This study will contribute to the future study for establishing an increasing coefficient for the design strength and optimum design of U-rib stiffened plates.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.

Three-Dimensional Finite Difference Analysis of Anisotropic Body with Arbitrary Boundary Conditions (임의의 경계조건을 갖는 비등방성 탄성체의 3차원 유한차분 해석)

  • Lee, Sang Youl;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.303-315
    • /
    • 2000
  • The main object of this study is to analyze mechanical behaviors as anisotropic three-dimensional body under various static loads. This paper presents the applicability of the finite difference method to three dimensional problem of anisotropic body. The finite difference method as applied here is generalized to anisotropic three-dimensional problem of elastic body where the governing differential equations of equilibrium of such bodies are expressed in terms of the displacement u, v, and w in the coordinates axes x, y and z, care being taken to modify the finite difference expressions to satisfy the appropriate boundary conditions. By adopting a new three dimensional finite difference modelling including elimination of pivotal difference points in the case of free boundary condition, the three dimensional problem of anisotropic body was successfully completed. Several numerical results show quick convergence and numerical validity of finite difference technique in three dimensional problem.

  • PDF

The Effect of the Reinforced Particles on the Mechanical and Fracture Behaviors of the SiC/Al2O3/Vinyl-Ester Composites (SiC/Al2O3/Vinyl-Ester 복합재료의 강화재 입자가 기계적 특성 및 파괴거동에 미치는 영향)

  • Kim, Da Jin Sol;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Particle reinforced composites are materials that have enhanced physical properties by adding particle reinforcements to polymer materials and have been applied to a wide range of fields such as the aerospace, bio-technology and automative industry. In this study, particle reinforced composites were prepared by mixing $SiC/Al_2O_3$ to the vinyl ester as the thermoset resin. The purpose of this study is to evaluate mechanical properties and fracture behavior by the tensile test and single edge notch specimen according to the addition ratio of reinforcement. Addition of 1 and 2 wt% of the particle reinforcement to the vinyl-ester resin was effective for the strength improvement. However, when it was more than 3 wt%, its strength was decreased. Also the highest elastic modulus obtained as 3.19 GPa was found at the 2 wt% addition of reinforcement. Futhermore the fracture toughness was evaluated by the energy release rate and the maximum critical energy release rate was obtained when 1 wt% reinforcement. The results show that the limit of adding of $SiC/Al_2O_3$ for improvement of the mechanical and fracture performance is 2 wt% reinforcement particles.

Nonlinear Analysis of Functionally Graded Materials Plates and Shells (점진기능재료(FGM) 판과 쉘의 비선형 해석)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.61-71
    • /
    • 2007
  • Navier's and Finite element solutions based on the first-order shear deformation theory are presented for the analysis of through-thickness functionally graded plates and shells. The functionally graded materials are considered: a sigmoid function is utilized for the mechanical properties through the thickness of the isotropic structure which varies smoothly through the plate and shell thickness. The formulation of a nonlinear 9-node Element-based Lagrangian shell element is presented for the geometrically nonlinear analysis. Natural-coordinate-based strains are used in present shell element. Numerical results of the linear and nonlinear analysis are presented to show the effect of the different top/bottom elastic modulus, loading conditions, aspect ratios and side-to-thickness ratios on the mechanical behaviors. Besides, the result according to the variation of the power-law index of isotropic functionally graded structures is investigated.

Simplified Static Analysis of Superstructure on Very Large Floating Structures subjected to Wave Loads (파랑하중을 받는 초대형 부유식 구조물 상부구조체의 실용정적해석법)

  • Song, Hwa-Cheol;Park, Hyo-Seon;Seo, Ji-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.519-526
    • /
    • 2003
  • For preliminary structural analysis of superstructures on very large floating structures(VLFS), superstructures are analyzed considering elastic deformations of barge type lower-structures subjected to wave loads. In this case, to consider the effect of wave loads on the superstructure, initial displacements at the support points of superstructures are evaluated as input data for the analysis. However, the evaluation and application of displacement loads are tedious and very time-consuming processes. Therefore, this paper proposes a simplified static analysis method to analyze the structural behaviors of superstructures on very large floating structures subjected to wave loads. In this study, the member forces due to the variation of beam span and the amplitude and period of wave load are analyzed by using an example 4 span -3 story structure and the amplification factors for beam moments are represented by the specific regression equation.

Evaluation of the Resilient and Permanent Behaviors of Cohesive Soils (점성토의 회복 및 영구변형 특성 평가)

  • SaGong, Myung;Kim, Dae-Hyeon;Choi, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • Resilient modulus has been used for characterizing the stress-strain behavior of subgrade soils subjected to traffic loadings. With the recent release of the M-E Design Guide, highway agencies are further encouraged to implement the resilient modulus test to improve subgrade design. The subgrade design for the trackbed, however, is primarily relying on the static test results such as $K_{30}$ and deformation modulus, Ev. Therefore applicability of the resilient modulus for the design of trackbed needs to be evaluated. In this study, physical property tests, unconfined compressive tests and resilient modulus tests were conducted to assess the resilient and permanent strain behavior of 14 cohesive subgrade soils. A predictive model for estimating the resilient modulus is proposed based on the results of unconfined compressive tests and tangent elastic modulus, unconfined compressive strength, failure strain, secant modulus at peak, and yield strain. The predicted resilient moduli using the predictive models compared satisfactorily with measured ones. Although the permanent strain occurs during the resilient modulus test, the permanent behavior of subgrade soils is currently not taken into consideration.

Strain-Softening Behavior of Circular Tunnel Excavated in Mohr-Coulomb Rock Mass (Mohr-Coulomb 암반에 굴착된 원형 터널의 변형률연화 거동해석)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.495-505
    • /
    • 2006
  • Calculating the distribution of stresses and displacements around a circular tunnel excavated in infinite isotropic rock mass subjected to hydrostatic stress condition is one of the basic problems in rock engineering. While closed-form solutions for the distribution are known if rock masses are considered as elastic, perfectly plastic, or brittle-plastic media, a few numerically approximated solutions based on various simplifying assumptions have been reported for strain-softening rock mass. In this study, a simple numerical method is introduced for the analysis of strain-softening behavior of the circular tunnel in Mohr-Coulomb rock mass. The method can also applied to the analysis of the tunnel in brittle-plastic or perfectly plastic media. For the brittle-plastic case where closed-formsolution exists, the performance of the present method is verified by showing an excellent agreement between two solutions. In order to demonstrate the strain-softening behaviors predicted by the proposed method. a parameter study for a softening index is given and the construction of ground reaction curves is carried out. The importance of defining the characteristics of dilation in plastic analysis is discussed through analyzing the displacements near the surface of tunnel.