• Title/Summary/Keyword: elastic beam deflection

Search Result 128, Processing Time 0.026 seconds

Analysis of Structural Performance of Wood Composite I and Box Beam on Cross Section Component (I) - Calculation and Analysis of Flexural Rigidity and Deflection - (단면구성요소(斷面構成要素)에 관(關)한 목질복합(木質複合) I및 Box형 보의 구조적(構造的) 성능(性能) 분석(分析) (I))

  • Oh, Sei-Chang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.40-55
    • /
    • 1991
  • To investigate the influence of cross section geometries on the behavior of composite beams in the case of small span to depth ratio and deep beams. the static flexural behavior of composite I-beams and Box- beams was evaluated. 12 types of composite I -beams composed of LVL flanges and particleboard or plywood web and 3 types of composite Box-beams composed of LVL flanges and plywood web were tested under one-point loading. The load-deflection curves were almost linear to failure, therefore, the behavior of tested composite beams was elastic. The theoretical flexural rigidity of composite beams was calculated and compared with observed flexural rigidity. The highest value was found in I-W type beams and the lowest value was found in G-P type beams. The difference between theoretical and observed flexural rigidity was small. Theoretical total deflection of tested composite beams was calculated using flexural rigidity and compared with actual deflection. Shear deflection of these beams was evaluated by the approximation method, solid crosss section method and elementary method. The difference between actual deflection and expected deflection was not found in D, E and F type beams. This defference was small in G, H and I type beams or Box-beam.

  • PDF

Elasto-Plastic Buckling Analysis Based on the Slope-Deflection Method (처짐각법을 이용한 선형부재의 탄소성 좌굴해식)

  • Cheong, Myung-Chae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.63-72
    • /
    • 2006
  • Fundamental equations of a member to analysis the elasto-plastic buckling analysis based on the deflection method are derived in this paper, and its validity and accuracy are shown by the numerical examples. The model discussing in the present paper has three elasto-plastic springs which are located at the both ends and center of a member and two elastic beam elements between them. The elasto-plastic springs represent the elasto-plastic behavior of the member and elastic beam element represents buckling behavior of the member. Numerical example shows the validity of this formulation.

  • PDF

Linear and nonlinear vibrations of inhomogeneous Euler-Bernoulli beam

  • Bakalah, Ebrahim S.;Zaman, F.D.;Saleh, Khairul
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • Dynamic problems arising from the Euler-Bernoulli beam model with inhomogeneous elastic properties are considered. The method of Green's function and perturbation theory are employed to find the deflection in the beam correct to the first-order. Eigenvalue problems appearing from transverse vibrations of inhomogeneous beams in linear and nonlinear cases are also discussed.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Elastic Critical Load and Effective Length Factors of Continuous Compression Member by Beam Analogy Method

  • Lee, Soo-Gon;Kim, Soon-Chul
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • The critical load of a continuous compression member was determined by the beam-analogy method. The proposed method utilizes the stress-analysis results of the analogous continuous beam, where imaginary concentrated lateral load changing its direction is applied at each midspan. The proposed method gives a lower bound error of critical load and can predict the span that buckles first. The effective length factors for braced frame columns can be easily determined by the present method, but result in the upper bound errors in all cases, which can lead to a conservative structural design.

  • PDF

Elastic lateral-distortional buckling of I-beams and the Meck Plot

  • Zirakian, Tadeh;Nojoumi, Seyed Ali
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.297-307
    • /
    • 2011
  • Meck Plot is an adapted version of the well-known Southwell method to the case of lateral-torsional buckling, which indeed reflects the physical inter-dependence of lateral flexure (lateral displacement) and torsion (rotation) in the structure. In the recent reported studies, it has been shown experimentally and theoretically that lateral displacement of an I-beam undergoing elastic lateral-distortional mode of buckling is interestingly directly coupled with other various deformation characteristics such as web transverse strain, web longitudinal strain, vertical deflection, and angles of twist of top and bottom flanges, and consequently good results have been obtained as a result of application of the Meck's method on lateral displacement together with each of the aforementioned deformation variables. In this paper, it is demonstrated that even web transverse and longitudinal strains, vertical deflection, and angles of twist of top and bottom flanges of an I-beam undergoing elastic lateral-distortional buckling are two-by-two directly coupled and the application of the Meck Plot on each pair of these deformation variables may still yield reliable predictions for the critical buckling load.

Elastic buckling of end-loaded, tapered, cantilevered beams with initial curvature

  • Wilson, James F.;Strong, Daniel J.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.257-268
    • /
    • 1997
  • The elastic deflections and Euler buckling loads are investigated for a class of tapered and initially curved cantilevered beams subjected to loading at the tip. The beam's width increases linearly and its depth decreases linearly with the distance from the fixed end to the tip. Unloaded, the beam forms a circular are perpendicular to the axis of bending. The beam's deflection responses, obtained by solving the differential equations in closed form, are presented in terms of four nondimensional system parameters: taper ratio ${\kappa}$, initial shape ratio ${\Delta}_0$, end load ratio f, and load angle ${\theta}$. Laboratory measurements of the Euler buckling loads for scale models of tapered initially straight, corrugated beams compared favorably with those computed from the present analysis. The results are applicable to future designs of the end structures of highway guardrails, which can be designed to give the appropriate balance between the capacity to deflect a nearly head-on vehicle back to its right-of-way and the capacity to buckle sufficiently that penetration of the vehicle may be averted.

Neural networks for inelastic mid-span deflections in continuous composite beams

  • Pendharkar, Umesh;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.165-179
    • /
    • 2010
  • Maximum deflection in a beam is a design criteria and occurs generally at or close to the mid-span. Neural networks have been developed for the continuous composite beams to predict the inelastic mid-span deflections (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage, in concrete) from the elastic moments and elastic mid-span deflections (neglecting instantaneous cracking and time effects). The training and testing data for the neural networks is generated using a hybrid analytical-numerical procedure of analysis. The neural networks have been validated for four example beams and the errors are shown to be small. This methodology, of using networks enables a rapid estimation of inelastic mid-span deflections and requires a computational effort almost equal to that required for the simple elastic analysis. The neural networks can be extended for the composite building frames that would result in huge saving in computational time.

Analytical solutions for static bending of edge cracked micro beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.579-599
    • /
    • 2016
  • In this study, static bending of edge cracked micro beams is studied analytically under uniformly distributed transverse loading based on modified couple stress theory. The cracked beam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-beams connected through a massless elastic rotational spring. The deflection curve expressions of the edge cracked microbeam segments separated by the rotational spring are determined by the Integration method. The elastic curve functions of the edge cracked micro beams are obtained in explicit form for cantilever and simply supported beams. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the elastic deflections of the edge cracked micro beams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and some typical boundary conditions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked microbeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

A Study on the Analysis of Overload of a Two-Span Continuous Bridige (2경간 연속교의 과재하중 해석방법에 관한 연구)

  • 한상철
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.47-53
    • /
    • 1993
  • Residual Deformation Analysis(RDA) is a new method for ratings of the continuous bridges. The RDA makes it possible to expand the inelastic steel girder bridge design method set forth in the American Association of State Highway Officals'(AASHTO) Guide Specifications for Alternate Load Factor Design Procedures for Steel Beam Bridges Using Braced Compact Sections(1986) into an inelastic rating method. It is a method to assess the residual moments and deformations that are set up in a beam that has been loaded into the post-elastic range This method combines classical elastic conjugate beam theory with linear moment-rotation relationships for midspan inelastic positive moment. The limit state is inelastic serviceability limit. which is defined as the ratio of the span to midspan inelastic deflection(C=L/D).

  • PDF