• Title/Summary/Keyword: elastic analysis

Search Result 4,669, Processing Time 0.031 seconds

The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation

  • Ozturk, Baki;Coskun, Safa Bozkurt
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.415-425
    • /
    • 2011
  • In this study, the homotopy perturbation method (HPM) is applied to free vibration analysis of beam on elastic foundation. This numerical method is applied on three different axially loaded cases, namely: 1) one end fixed, the other end simply supported; 2) both ends fixed and 3) both ends simply supported cases. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, $N_r$. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for all the cases considered in this study and the differential transform method (DTM) results available in the literature for the fixed-pinned case.

Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.303-314
    • /
    • 2004
  • An artificial neural network (ANN) application is presented for flexural and axial vibration analysis of elastic beams with various support conditions. The first three natural frequencies of beams are obtained using multi layer neural network based back-propagation error learning algorithm. The natural frequencies of beams are calculated for six different boundary conditions via direct solution of governing differential equations of beams and Rayleigh's approximate method. The training of the network has been made using these data only flexural vibration case. The trained neural network, however, had been tested for cantilever beam (C-F), and both end free (F-F) in case the axial vibration, and clamped-clamped (C-C), and Guided-Pinned (G-P) support condition in case the flexural vibrations which were not included in the training set. The results found by using artificial neural network are sufficiently close to the theoretical results. It has been demonstrated that the artificial neural network approach applied in this study is highly successful for the purposes of free vibration analysis of elastic beams.

Linear-Elastic Behavior Analysis of CFTA Girder Filled with High-Strength Concrete (고강도 콘크리트를 적용시킨 CFTA 거더의 선형 탄성 거동분석)

  • Choi, Sung-Woo;Lee, Hak;Jung, Min-Chul;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.511-516
    • /
    • 2008
  • Recently, many researchers are studying a high-strength concrete, composite materials and composite structures to build structures more economic and stable all over the world. For instance, there is CFTA(Concrete Filled and Tied Steel Tubular Arch) girder that applies an arch structure and a pre-stressed structure to CFT(Concrete Filled Steel Tubular) Structure to maximize the efficiency of structure and economic. In this study, linear-elastic behavior analysis of CFTA gider filled with high-strength concrete was performed by using ABAQUS 6.5-1 and also the result was analyzed.

  • PDF

A Study on Finite Element Analysis with Paraxial Boundary Conditions for Elastic Wave Propagation (탄성파 진행 문제를 위한 Paraxial 경계조건의 유한요소해석에 관한 연구)

  • Kim, Hee-Seok;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.33-38
    • /
    • 2008
  • For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. Paraxial boundary conditions(PBCs) which are kinds of absorbing boundary conditions based on paraxial approximations of the scalar and elastic wave equations not only lead to well-posed problem but also are stable and computationally inexpensive. But the complex mathematical forms of PBCs with partial derivatives complicate the application of those to finite element analysis. In this paper a penalty functional is newly proposed for applying PBCs into finite element analysis and the existence and uniqueness of the extremum of the proposed functional is demonstrated. The numerical verification of the efficiency is carried out through comparing PBCs with a viscous boundary condition.

  • PDF

Vibration Analysis for Beams on Variable Two-Parameter Elastic Foundations Using Differetial Transformation (Differential Transformation에 의한 가변 2 파라미터 탄성기초에 설치된 보의 진동해석)

  • 신영재;김재호;황정기
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.357-363
    • /
    • 2001
  • This paper presents the application of the technique Q( differential transformation to the vibration analysis of beams resting on variable two-parameter elastic foundations. The closed form series solutions for beams are obtained for various boundary conditions. Numerical calculations are carried out and compared with previously published results. The results obtained by the present method agree very well with those reported in the previous works. The present analysis shows the usefulness and validity of differential transformation in solving nonlinear problem of the free vibration.

  • PDF

A Study on the Calculation of Stiffness Properties for Composite Box-Beams with Elastic Couplings (구조연성을 고려한 복합재료 상자형 보의 강성계수 예측에 관한 연구)

  • 정성남;동경민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.147-150
    • /
    • 2001
  • In the present work, a linear static analysis is presented for thin-walled prismatic box-beams made of generally anisotropic materials. A mixed beam theory has been used to model and carry out the analysis. Three different constitutive relations are assessed into the beam formulation. Simple layup cases having symmetric or anti-symmetric configuration have been chosen and tested to clearly show the effects of elastic couplings of the beam. Both 2D and 3D finite element structural analysis using the MSC/NASTRAN has been performed to validate the current analytical results. Results show that appropriate assumptions for the constitutive equations are important and prerequisite for the accurate prediction of beam stiffness constants and also for the beam behavior.

  • PDF

Strain Analysis of a Six Axis Force-Torque Sensor Using Cross-Shaped Elastic Structure with Circular Holes (원구멍이 있는 십자형 탄성체를 가진 6축 힘, 토크 센서의 변형률 해석)

  • Kim, Joo-Yong;Kang, Chul-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.5-14
    • /
    • 1999
  • The necessity of six axis force-torque sensors is well recognized in the fields of automatic fine assembly, deburring polishing, and automatic fish processing using robotic manipulators. The paper proposes a simple and compact elastic structure of the force-torque sensor which senses externally applied three force and three torque components. Rough surface strain distribution of the elastic structure is examined analytically, and then more accurate surface strain are obtained from finite element analysis. The compliance matrix which is a linear relationship between force components and strain measurements is obtained for the proposed sensor. Some basic principles of measuring 3 force and torque components are also presented.

  • PDF

Axisymmetric analysis of multi-layered transversely isotropic elastic media with general interlayer and support conditions

  • Lee, J.S.;Jiang, L.Z.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.49-62
    • /
    • 1994
  • Based on the transfer matrix approach and integral transforms, a solution method is developed for the stress analysis of axisymmetrically loaded transversely isotropic elastic media with generalized interlayer and support conditions. Transfer functions (Green's functions in the transformed domain) are obtained in explicit integral form. For several problems of practical interest with different loading and support conditions, solutions are worked out in detail. For the inversion operation, an efficient technique is introduced to remedy the slow convergence of numerical integrals involving oscillating functions. Several illustrative examples are considered and numerical results are presented.

Dynamic Analysis of Space Frameworks on the Elastic soil (탄성 지반상에 놓인 3차원 골조구조물의 동적해석)

  • 장병순;서상근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.37-44
    • /
    • 1996
  • When a load such as the mechanical load, the wind load, and the seismic load causing a vibration, acts on the body of the 3-D frameworks with slab, it is required to consider the dynamic behavior of elastic soil as well as that of 3-D structure in the structural analysis. Thus, this study presents the analysis of dynamic behavior using finite element method that is formulated by using a model of the 3-D structure. For the idealization of the actual structure closely into a geometric shape, plate is subdivided into 4-node plate element with the flexibility, beam-column is subdivided into 2-node beam element, and elastic soil is subdivided into 8-node brick element.

  • PDF

Spur gear forging tool manufacturing method considering elastic deformation due to shrink-fitting (열박음에 의한 탄성변형을 고려한 평기어금형 제작 방법에 관한 연구)

  • Kang, J.H.;Ko, B.H.;Jae, J.S.;Kang, S.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.381-385
    • /
    • 2006
  • This research introduces easy tool manufacturing method regarding tool manufacturing procedure. In the conventional method, wire cutting machining and lapping operation of corner and render region were performed after shrink-fitting to ensure the accuracy of gear profile. But lapping operation is very difficult due to corner and render is located deep inside of die. In this research, wire cutting operation was performed after $1^{st}$ ring was shrink-fitted to ease lapping operation and increase the accuracy of corner radius. Before $2^{nd}$ ring fitting, lapping was completed. Elastic deformation amount due to $2^{nd}$ ring fitting and cold forging was calculated through finite element analysis and wire cutting specification was offset in that amount. Comparison of gear dimension between analysis and forged part ensures the validity of new manufacturing methods.

  • PDF