• Title/Summary/Keyword: elastic analysis

Search Result 4,669, Processing Time 0.027 seconds

Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.215-224
    • /
    • 2020
  • In the present study, according to the important of porosity in low specific weight in comparison of high stiffness of carbon nanotubes reinforced composite, buckling and free vibration analysis of sandwich composite beam in two configurations, of laminates using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and three types of porosity distribution on critical buckling load and natural frequency are discussed. It is shown the buckling loads and natural frequencies of laminate 1 are significantly larger than the results of laminate 2. When configuration 2 (the core is made of FRC) and laminate 1 ([0/90/0/45/90]s) are used, the first natural frequency rises noticeably. It is also demonstrated that the influence of the core height in the case of lower carbon volume fractions is negligible. Even though, when volume fraction of fiber increases, the critical buckling load enhances smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Investigating three porosity patterns, beam with the distribution of porosity Type 2 has the maximum critical buckling load and first natural frequency. Among three elastic foundations (constant, linear and parabolic), buckling load and natural frequency in linear variation has the least amount. For all kind of elastic foundations, when the porosity coefficient increases, critical buckling load and natural frequency decline significantly.

Instability analysis of viscoelastic CNTs surrounded by a thermo-elastic foundation

  • Amir, Saeed;Khani, Mehdi;Shajari, Ali Reza;Dashti, Pedram
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • Static and dynamic instability of a viscoelastic carbon nanotube (CNT) embedded on a thermo-elastic foundation are investigated, in this research. The CNT is modeled based on Euler-Bernoulli beam (EBB) and nonlocal small scale elasticity theory is utilized to analyze the structure. Governing equations of the system are derived using Hamilton's principle and differential quadrature (DQ) method is applied to solve the partial differential equations. The effects of variable axial load and diverse boundary conditions on static/vibration instability are studied. To verify the result of the DQ method, the Galerkin weighted residual approach is used for the instability analysis. It is observed appropriate agreement for results of two different solution methods and satisfactory accuracy with those obtained in prior studies. The results of this work could be useful for engineers and designers in order to produce and design nano/micro structures in thermo-elastic medium.

Deformation Behaviors of Materials during Nanoindentation Test and Simulation by Three-Dimensional Finite Element Analysis (재료의 나노인덴테이션 변형 거동과 3차원 유한요소해석)

  • Kim Ji-soo;Yang Hyeon-yun;Yun Jon-do;Cho Sang-bong
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.436-442
    • /
    • 2004
  • Elastic and plastic deformation behaviors of the high purity aluminum and the silica glass were studied using nanoindentation and finite element analysis(FEA) techniques. Berkovich- and cone-type indenters were used for the nanoindentation test. Deformation behaviors and nanoindent profiles of elastic, elastic-plastic or plastic materials were clearly visualized by FEA simulation. Effects of the penetration depth and strain hardening on the deformation behavior were examined. Pile-up and sink-in behaviors were studied by using FEA technique. Degree of pile-up or sink-in was found to be a function of the ratio of elastic modulus to yield strength of materials. FEA was found to be an effective method to study deformation behaviors of materials under nanoindentation, especially in the case when pile-up or sink-in phenomena occurred.

Infinite Element for the Scaled Boundary Analysis of Initial Valued on-Homogeneous Elastic Half Space (초기값을 갖는 비동질무한영역의 해석을 위한 비례경계무한요소법)

  • Lee, Gye-Hee;Deeks, Andrew J.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.199-208
    • /
    • 2008
  • In this paper, to analyze the initial valued non-homogeneous elastic half space by the scaled boundary analysis, the infinite element approach was introduced. The free surface of the initial valued non-homogeneous elastic half space was modeled as a circumferential direction of boundary scaled boundary coordinate. The infinite element was used to represent the infinite length of the free surface. The initial value of material property(elastic modulus) was considered by the combination of the position of the scaling center and the power function of the radial direction. By use of the mapping type infinite element, the consistent elements formulation could be available. The performance and the feasibility of proposed approach are examined by two numerical examples.

Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Wang, Yun-Che;Novozhilova, Olga V.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.731-743
    • /
    • 2016
  • Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. Temperature-dependent mechanical properties are considered for the matrix material only. In addition to analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises stress in the matrix would be largely overestimated.

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri;Abbas Loghman;Mohammad Arefi
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.115-126
    • /
    • 2023
  • This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

Structural integrity assessment procedure of PCSG unit block using homogenization method

  • Gyogeun Youn;Wanjae Jang;Youngjae Jeon;Kang-Heon Lee;Gyu Mahn Lee;Jae-Seon Lee;Seongmin Chang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1365-1381
    • /
    • 2023
  • In this paper, a procedure for evaluating the structural integrity of the PCSG (Printed Circuit Steam Generator) unit block is presented with a simplified FE (finite element) analysis technique by applying the homogenization method. The homogenization method converts an inhomogeneous elastic body into a homogeneous elastic body with same mechanical behaviour. This method is effective when the inhomogeneous elastic body has repetitive microstructures, and thus the method was applied to the sheet assembly among the PCSG unit block components. From the method, the homogenized equivalent elastic constants of the sheet assembly were derived. The validity of the determined material properties was verified by comparing the mechanical behaviour with the reference model. Thermo-mechanical analysis was then performed to evaluate the structural integrity of the PCSG unit block, and it was found that the contact region between the steam header and the sheet assembly is a critical point where large bending stress occurs due to the temperature difference.

Inelastic Response Characteristic Analysis of Frame Structures Subjected to Near Fault Ground Motion (근거리지진을 받는 골조 구조물의 비탄성응답 특성 분석)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.273-284
    • /
    • 2006
  • In this study, After considering the general characteristic of Near Fault Ground Motion, the inelastic response spectrum is made to evaluate using the change of ductility and yield stiffness coefficient according to the inelastic behavior of structures which couldn't be examined through the elastic response spectrum. It is conducted to the elastic and inelastic time history analysis about the long period structure which could reflect the characteristic of Near Fault Ground Motion with the best and it is also examined the aspect of response distribution about the input data. Moreover, the response characteristic of structure is analyzed by investigating the plastic hinge for the purpose of grasp about the inelastic behavior of structure.

Thermal Stress Evaluation by Elastic-Creep Analysis during Start-up of Boiler Header (보일러 헤더 기동시의 탄성 크리프 해석에 의한 열응력 평가)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.17-22
    • /
    • 2009
  • Thermal stress and elastic creeping stress analysis was conducted by finite element method to simulate start-up process of a boiler header of 500MW standard fossil power plant. Start-up temperature and operating pressure history were simplified from the real field data and they were used for the thermal stress analysis. Two kinds of thermal stress analysis were considered. In the first case only temperature increase was considered and in the second case both of temperature and operating pressure histories were considered. In the first analysis peak stress was occurred during the temperature increase from the room temperature. Hence cracking or fracture may occur at the temperature far below the operating maximum temperature. In the results of the second analysis von Mises stress appeared to be higher after the second temperature increase. This is due to internal pressure increase not due to the thermal stress. When the stress components of radial(r), hoop($\theta$) and longitudinal(z) stress were investigated, compression hoop stress was occurred at inner surface of the stub tube when the temperature increased from room temperature to elevated temperature. Then it was changed to tension hoop stress and increased because of the operating pressure. It was expected that frequent start-up and shut-down operations could cause thermal fatigue damage and cracking at the stub tube hole in the header. Elastic-creeping analysis was also carried out to investigate the stress relaxation due to creep and stabilized stress after considerable elapsed time. The results could be used for assessing the creep damage and the residual life of the boiler header during the long-tenn service.

J-integral and fatigue life computations in the incremental plasticity analysis of large scale yielding by p-version of F.E.M.

  • Woo, Kwang S.;Hong, Chong H.;Basu, Prodyot K.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.51-68
    • /
    • 2004
  • Since the linear elastic fracture analysis has been proved to be insufficient in predicting the failure of strain hardening materials, a number of fracture concepts have been studied which remain applicable in the presence of plasticity near a crack tip. This work thereby presents a new finite element model to predict the elastic-plastic crack-tip field and fatigue life of center-cracked panels(CCP) with ductile fracture under large-scale yielding conditions. Also, this study has been carried out to investigate the path-dependence of J-integral within the plastic zone for elastic-perfectly plastic, bilinear elastic-plastic, and nonlinear elastic-plastic materials. Based on the incremental theory of plasticity, the p-version finite element is employed to account for the accurate values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ${\Delta}J$ for ${\Delta}K$. The experimental fatigue test is conducted with five CCP specimens to validate the accuracy of the proposed model. It is noted that the relationship between the crack length a and ${\Delta}K$ in LEFM analysis shows a strong linearity, on the other hand, the nonlinear relationship between a and ${\Delta}J$ is detected in EPFM analysis. Therefore, this trend will be depended especially in the case of large scale yielding. The numerical results by the proposed model are compared with the theoretical solutions in literatures, experimental results, and the numerical solutions by the conventional h-version of the finite element method.