DOI QR코드

DOI QR Code

Structural integrity assessment procedure of PCSG unit block using homogenization method

  • Gyogeun Youn (SMART System Development Division, Korea Atomic Energy Research Institute) ;
  • Wanjae Jang (Department of Mechanical Design Engineering, Kumoh National Institute of Technology) ;
  • Youngjae Jeon (Department of Mechanical Design Engineering, Kumoh National Institute of Technology) ;
  • Kang-Heon Lee (SMART System Development Division, Korea Atomic Energy Research Institute) ;
  • Gyu Mahn Lee (SMART System Development Division, Korea Atomic Energy Research Institute) ;
  • Jae-Seon Lee (SMART System Development Division, Korea Atomic Energy Research Institute) ;
  • Seongmin Chang (Department of Mechanical Design Engineering, Kumoh National Institute of Technology)
  • Received : 2022.11.14
  • Accepted : 2022.12.11
  • Published : 2023.04.25

Abstract

In this paper, a procedure for evaluating the structural integrity of the PCSG (Printed Circuit Steam Generator) unit block is presented with a simplified FE (finite element) analysis technique by applying the homogenization method. The homogenization method converts an inhomogeneous elastic body into a homogeneous elastic body with same mechanical behaviour. This method is effective when the inhomogeneous elastic body has repetitive microstructures, and thus the method was applied to the sheet assembly among the PCSG unit block components. From the method, the homogenized equivalent elastic constants of the sheet assembly were derived. The validity of the determined material properties was verified by comparing the mechanical behaviour with the reference model. Thermo-mechanical analysis was then performed to evaluate the structural integrity of the PCSG unit block, and it was found that the contact region between the steam header and the sheet assembly is a critical point where large bending stress occurs due to the temperature difference.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (NRF- 2020M2D7A1079180 and NRF-2022M2D7A1015527).

References

  1. S.W. Seo, J.Y. Lee, S.J. Kim, Status of manufacturing experimental apparatus to investigate SWR phenomenon in the PCSG, in: Transactions of the Korean Nuclear Society Spring Meeting, May 23-24, 2019. Jeju, Korea.
  2. H.O. Kang, H.S. Han, Y.I. Kim, K.K. Kim, Two-phase instability characteristics of Printed Circuit Steam Generator for the low pressure condition, in: Transactions of the Korean Nuclear Society Spring Meeting, May 7-8, 2015. Jeju, Korea.
  3. H.O. Kang, H.S. Han, Y.I. Kim, K.K. Kim, Thermal-hydraulic design of a printed-circuit steam generator for integral reactor, KSFM J. Fluid. Mach. 17 (2014) 77-83. https://doi.org/10.5293/kfma.2014.17.6.077
  4. K. Shirvan, P. Hejzlar, M.S. Kazimi, The design of a compact integral medium size PWR, Nucl. Eng. Des. 243 (2011) 393-403. https://doi.org/10.1016/j.nucengdes.2011.11.023
  5. A.M. Johnston, W. Levy, S.O. Rumbold, Application of printed circuit heat exchanger technology within heterogeneous catalytic reactors, in: AIChE Annual Meeting, 2001. Reno, Nevada, United States, November 4-9.
  6. J.S. Kwon, D.H. Kim, S.G. Shin, J.I. Lee, S.J. Kim, Assessment of thermal fatigue induced by dryout front oscillation in printed circuit steam generator, Nucl. Eng. Technol. 54 (2022) 1085-1097. https://doi.org/10.1016/j.net.2021.09.004
  7. S.J. Kim, T.W. Kim, Design methodology and computational fluid analysis for the printed circuit steam generator, J. Mech. Sci. Technol. 34 (2020) 5303-5314. https://doi.org/10.1007/s12206-020-1131-2
  8. Y.J. Lee, S.J. An, S.W. Lim, 1-D PCSG model development for preliminary safety analysis of SMART Plus, in: Transactions of the Korean Nuclear Society Virtual Autumn Meeting, 2021, p. 2021.
  9. C.W. Shin, H.C. No, Experimental study for pressure drop and flow instability of two-phase flow in the PCHE-type steam generator for SMRs, Nucl. Eng. Des. 318 (2017) 109-118. https://doi.org/10.1016/j.nucengdes.2017.04.004
  10. X. Yuan, L. Yang, Z. Shang, Experimental and numerical investigation on flow boiling in a small semi-circular channel of plate once-through steam generator, Heat Tran. Eng. 43 (2022) 208-222. https://doi.org/10.1080/01457632.2021.1874180
  11. I.H. Kim, H.C. No, J.I. Lee, B.G. Jeon, Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations, Nucl. Eng. Des. 239 (2009) 2399-2408. https://doi.org/10.1016/j.nucengdes.2009.07.005
  12. A.D. Ronco, A. Cammi, S. Lorenzi, Preliminary analysis and design of the heat exchangers for the molten salt Fast reactor, Nucl. Eng. Technol. 52 (2020) 51-58. https://doi.org/10.1016/j.net.2019.07.013
  13. The American Society of Mechanical Engineers, ASME BPVC Sec, VIII Division 1, 2015 Edition, 2015.
  14. E. Sanchez-Palencia, Non-homogenous media and vibration theory, in: Volume 127 of Lecture Notes in Physics, Springer, Berlin, 1980.
  15. A. Benssousan, J.L. Lions, G. Papanicoulau, Asymptotic Analysis for Periodic Structures, AMS Chelsea Publishing, Rhode Island, 2010.
  16. D. Cioranescu, J.S.J. Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl. 71 (1979) 590-607. https://doi.org/10.1016/0022-247X(79)90211-7
  17. J.M. Guedes N. Kikuchi, Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Eng. 83 (1990) 143-198. https://doi.org/10.1016/0045-7825(90)90148-F
  18. M.P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71 (1988) 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  19. Y.Y. Kim, Theory and Applications of Elasticity, second ed., Munundang, Seoul, 2009.
  20. M.H. Cho, S.H. Yang, S. Chang, S.Y. Yu, A study on the prediction of the mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept, Int. J. Numer. Methods Eng. 85 (2011) 1564-1583. https://doi.org/10.1002/nme.3039
  21. S. Chang, S. Yang, H. Shin, M. Cho, Multiscale homogenization model for thermoelastic behavior of epoxy-based composites with polydisperse SiC nanoparticles, Compos. Struct. 128 (2015) 342-353. https://doi.org/10.1016/j.compstruct.2015.03.041
  22. H. Shin, J.G. Han, S. Chang, M. Cho, Local nanofiller volume concentration effect on elastic properties of polymer nanocomposites, Multiscale Multiphys. Mech. 1 (2016) 65-76. https://doi.org/10.12989/mmm.2016.1.1.065
  23. H. Shin, S. Chang, J. Jeong, M. Cho, Stochastic homogenization of nanothickness thin films including patterned holes using structural perturbation method, Probabilist. Eng. Mech. 49 (2017) 1-12. https://doi.org/10.1016/j.probengmech.2017.08.001
  24. R. Altmann, P. Henning, D. Peterseim, Numerical homogenization beyond scale separation, Acta Numer. 30 (2021) 1-86. https://doi.org/10.1017/S0962492921000015
  25. ANSYS Inc, ANSYS Workbench Documentation, ANSYS 2020 R2 version, 2020.
  26. Korea Electric Association, KEPIC MD: Material Properties (SI Unit), 2015 Edition, 2015.
  27. The American Society of Mechanical Engineers, ASME BPVC Sec. II Part D: Properties (Metric), 2015 Edition, 2015.