• Title/Summary/Keyword: eigenvalue technique

Search Result 145, Processing Time 0.023 seconds

A Study on the Dynamic Response Analysis of Shell Structure with Impulsive Load by Reanalysis Technique (재해석 기법에 의한 충격 하중을 받는 쉘 구조물의 동적 응답 해석에 관한 연구)

  • 배동명
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.132-151
    • /
    • 1993
  • The proposed method in this paper. termed the substructural reanalysis technique, utilizes the computational merits of the component mode synthesis technique and of reanalysis technique for the design sensitivities of the dynamic characteristics of substructurally combined structure. It is shown that the dynamic characteristics of the entire structure can be obtained by synthesizing the substructural eigensolution and the characteristics of the eigensolution for the design variables of the modifiable substructure. In this paper , the characteristics of the eigenvalue problems obtained by this proposed method are compared to exact eigensolution in terms of accuracy and computational efficiency. and the advantage of this proposed method as compared to the direct application of the whole structure and experimental results is demonstrated through examples of numerical calculation for the dynamic characteristics (natural frequencies and mode shapes) of a flexible vibration of thin cylinderical shell with branch shell under 2-end fixed positions, boundary condition. Thin cylinderical shell of overall length 1280mm, external diameter 360mm, thickness 3mm with branch shell is made of mild steel. The load condition for dynamic response in this paper is impulsive load of which magnitude is 10kgf, which have short duration of 0.1 sec. and time interval applied to calculate. $\Delta$T is 1.0$\times$10 super(-4) seconds.

  • PDF

Iterated Improved Reduced System (IIRS) Method Combined with Sub-Structuring Scheme (II) - Nonclassically Damped Structural Systems - (부구조화 기법을 연동한 반복적인 동적 축소법 (II) - 비비례 감쇠 구조 시스템 -)

  • Choi, Dong-Soo;Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.221-230
    • /
    • 2007
  • An iterated improved reduced system (IIRS) procedure combined with sub-structuring scheme for nonclassically damped structural systems is presented. For dynamic analysis of such systems, complex eigenproperties are required to incorporate properly the nonclassical damping effect. In complex structural systems, the equations of motion are written in the state space from. Thus, the number of degrees of freedom of the new equations of motion and the size of the associated eigenvalue problem required to obtain the complex eigenvalues and eigenvectors are doubled. Iterated IRS method is an efficient reduction technique because the eigenproperties obtained in each iteration step improve the condensation matrix in the next iteration step. However, although this reduction technique reduces the size of problem drastically, it is not efficient to apply this technique to a single domain finite element model with degrees of freedom over several thousands. Therefore, for a practical application of the reduction method, accompanying sub-structuring scheme is necessary. In the present study, iterated IRS method combined with sub-structuring scheme for nonclssically damped structures is developed. Numerical examples demonstrate the convergence and the efficiency of a newly developed scheme.

Structural Identification for Structural Health Monitoring of Long-span Bridge - Focusing on Optimal Sensing and FE Model Updating - (장대교량의 구조 건전도 모니터링을 위한 구조식별 기술 - 최적 센싱 및 FE 모델 개선 중심으로 -)

  • Heo, Gwanghee;Jeon, Joonryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.830-842
    • /
    • 2015
  • This paper aims to develop a SI(structural identification) technique using the kinetic energy optimization technique(KEOT) and the direct matrix updating method(DMUM) to decide on optimal location of sensors and to update FE model respectively, which ultimately contributes to a composition of more effective SHM. Owing to the characteristic structural flexing behavior of cable bridges, which makes them vulnerable to any vibration, systematic and continuous structural health monitoring (SHM) is pivotal for them. Since it is necessary to select optimal measurement locations with the fewest possible measurements and also to accurately assess the structural state of a bridge for the development of an effective SHM, a SI technique is as much important to accurately determine the modal parameters of the current structure based on the data optimally obtained. In this study, the KEOT was utilized to determine the optimal measurement locations, while the DMUM was utilized for FE model updating. As a result of experiment, the required number of measurement locations derived from KEOT based on the target mode was reduced by approximately 80 % compared to the initial number of measurement locations. Moreover, compared to the eigenvalue of the modal experiment, an improved FE model with a margin of error of less than 1 % was derived from DMUM. Finally, the SI technique for long-span bridges proposed in this study, which utilizes both KEOT and DMUM, is proven effective in minimizing the number of sensors while accurately determining the structural dynamic characteristics.

Improvement of Subspace Iteration Method with Shift (쉬프트를 갖는 부분공간 반복법의 개선)

  • Jung, Hyung Jo;Kim, Man Cheol;Park, Sun Kyu;Lee, In Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.473-486
    • /
    • 1998
  • A numerically stable technique to remove the limitation in choosing a shift in the subspace iteration method with shift is presented. A major difficulty of the subspace iteration method with shift is that because of singularity problem, a shift close to an eigenvalue can not be used, resulting in slower convergence. This study solves the above singularity problem using side conditions without sacrifice of convergence. The method is always nonsingular even if a shift is an eigenvalue itself. This is one of the significant characteristics of the proposed method. The nonsingularity is proved analytically. The convergence of the proposed method is at least equal to that of the subspace iteration method with shift, and the operation counts of above two methods are almost the same when a large number of eigenpairs are required. To show the effectiveness of the proposed method, two numerical examples are considered.

  • PDF

Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Beams Subjected to Eccentrically Axial Forces (편심축하중을 받는 비대칭 박벽보의 엄밀한 동적강도행렬)

  • Kim, Moon Young;Yun, Hee Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.703-713
    • /
    • 2001
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled straight beams subjected to eccentrically axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of nonsymmetric thin-walled straight beams are evaluated and compared with analytical solutions or results by thin-walled beam element using the cubic Hermitian polynomials and ABAQU's shell elements in order to demonstrate the validity of this study.

  • PDF

Computational Modelling Method by Using the Natural Frequencies of Five-Story Stone Pagoda in Chongnimsa Site (고유진동수를 이용한 정림사지 5층 석탑의 구조모델)

  • Lee, Sung-Min;Lee, Ki-Hak;Park, Sun-Woo;Suh, Man-Chul;Lee, Chan-Hee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.67-74
    • /
    • 2008
  • Multi-layered stone masonry monuments, such as stone pagoda can be modeled as a multi-degrees of freedom system. The dynamic behavior of these structures are mainly influenced by contour condition of contacting surface of stones. In this case the mass of the system can be easily estimated, mean while the estimation of stiffness at junction is not simple. In this paper a method for estimating the spring constant at the contacting surface of stone in proposed. This paper describes a method of computational modelling technique for structural analysis of stone pagodas using measurement of natural frequency and eigenvalue analysis. For this purpose Five story stone pagoda in Cchongnimsa site was selected as a model.

  • PDF

Comparisons of Parallel Preconditioners for the Computation of Interior Eigenvalues by the Minimization of Rayleigh Quotient (레이레이 계수의 최소화에 의한 내부고유치 계산을 위한 병렬준비행렬들의 비교)

  • Ma, Sang-back;Jang, Ho-Jong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.2
    • /
    • pp.137-140
    • /
    • 2003
  • Recently, CG (Conjugate Gradient) scheme for the optimization of the Rayleigh quotient has been proven a very attractive and promising technique for interior eigenvalues for the following eigenvalue problem, Ax=λx (1) The given matrix A is assummed to be large and sparse, and symmetric. Also, the method is very amenable to parallel computations. A proper choice of the preconditioner significantly improves the convergence of the CG scheme. We compare the parallel preconditioners for the computation of the interior eigenvalues of a symmetric matrix by CG-type method. The considered preconditioners are Point-SSOR, ILU (0) in the multi-coloring order, and Multi-Color Block SSOR (Symmetric Succesive OverRelaxation). We conducted our experiments on the CRAY­T3E with 128 nodes. The MPI (Message Passing Interface) library was adopted for the interprocessor communications. The test matrices are up to $512{\times}512$ in dimensions and were created from the discretizations of the elliptic PDE. All things considered the MC-BSSOR seems to be most robust preconditioner.

Wide Beam Design of a Fully Digital Active Array Radar Using Convex Optimization with Only Phase Control (위상 조정 Convex 최적화 알고리즘을 이용한 완전 디지털 능동배열레이다의 광역빔 설계)

  • Yang, Woo-Yong;Lee, Hyun-Seok;Yang, Sung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.479-486
    • /
    • 2019
  • The fully digital active array radar uses a wide beam for effective mission performance within a limited time. This paper presents a convex optimization algorithm that adjusts only the phase of an array element. First, the algorithm applies a semidefinite relaxation technique to relax the constraint and convert it to a convex set. Then, the constraint is set so that the amplitude is fixed to some extent and the phase is variable. Finally, the optimization is performed to minimize the sum of the eigenvalues obtained through eigenvalue decomposition. Compared to the application results of the existing genetic algorithm, the proposed algorithm is more effective in wide beam design for a fully digital active array radar.

The Impovement of Convergence Speed in Real Time Vital Sign Information Management System in Patient Monitoring Systems (적응 횡단선 필터의 등화기에서 수렴속도 개선)

  • Lim, Se-jeong;Kim, Gwang-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.88-94
    • /
    • 2013
  • In this paper, an efficient signal interference control technique to improve the convergence speed of LMS algorithm is introduced. The convergence characteristics of the proposed algorithm,whose coefficients are multiply adapted in a symbol time period by recycling the received data,are analyzed to prove theoretically the improvement of convergence speed. According as thestep-size parameter ${\mu}$ is increased, the rate of convergence of the algorithm is controlled. Increasing the eigenvalue spread has the effect of controlling down the rate of convergence of the adaptive equalizer and also increasing the steady-state value of the average squared error and also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS technique.

Signal Interference Rejection using Data-Recycling LMS Algorithm in Digital Communication System (디지털 통신 시스템에서 데이터-재순환 LMS 알고리즘을 이용한 신호 간섭 제어)

  • 김원균;나상동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1329-1338
    • /
    • 1999
  • In this paper, an efficient signal interference control technique to improve the convergence speed of LMS algorithm is introduced. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, are analyzed to prove theoretically the improvement of convergence speed. According as the step-size parameter $\mu$ is increased, the rate of convergence of the algorithm is controlled. Also, a increase in the step-size parameter $\mu$ has the effect of reducing the variation in the experimentally computed learning curve. Increasing the eigenvalue spread has the effect of controlling down the rate of convergence of the adaptive equalizer and also increasing the steady-state value of the mean squared error and also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS technique.

  • PDF