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ABSTRACT : A numerically stable technique to remove the limitation in
choosing a shift in the subspace iteration method with shift is presented. A
major difficulty of the subspace iteration method with shift is that because of
singularity problem, a shift close to an eigenvalue can not be used, resulting
in slower convergence. This study solves the above singularity problem using
side conditions without sacrifice of convergence. The method is always
nonsingular even if a shift is an eigenvalue itself. This is one of the
significant characteristics of the proposed method. The nonsingularity is
proved analytically. The convergence of the proposed method is at least equal
to that of the subspace iteration method with shift, and the operation counts
of above two methods are almost the same when a large number of eigenpairs
are required. To show the effectiveness of the proposed method, two
numerical examples are considered.
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1. Introduction

Eigenvalue analysis is an important step
in structural dynamic analysis when the
mode superposition method is used. Many
solution methods have been developed for
eigenvalue analysis, and among these
methods the subspace iteration method has
hitherto been known to be very efficient
for solving large eigenvalue problems.

The subspace iteration method was
developed and named by Bathe"™?. This
method combines simultaneous inverse
iteration method and Rayleigh-Ritz
analysis. This method has been widely
used, but the following shortcomings have
been identified after extensive use of the
method"?.

(1) When the number of eigenpairs to be
required is large, the convergence of the
required eigenvalues can be very slow.

(2) If a large number of eigenpairs are
required, the computational effort required
to form and solve the subspace eigenvalue
problem can be significant.

(3) When the starting iteration vectors
are poorly chosen, some of the eigenvalues
and corresponding eigenvectors of interest
may be missed.

To overcome the above shortcomings
many researchers have studied a variety
of acceleration procedures of the subspace
iteration method as follows.

“ have used

Yamamoto and Ohtsubo
Chebyshev polynomials for acceleration
and they have shown that improved
convergence in the subspace iteration can

result. Akl et al.”’ have employed
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over-relaxation method to accelerate
the subspace iteration and they have
demonstrated the effectiveness of the
method. Bathe and Ramaswamy'® have
used over-relaxation and shifting tech-
niques and they showed that the
accelerated method can be applied
effectively to the solution of eigenproblems
in which the matrices have small or large

™ have

bandwidths. Nguyen and Arora
developed the method for free vibration
analysis of a large structure by
partitioning it into a number of
substructures to reduce the computer
storage requirement. Cheu et al.’’ have
investigated the effects of selecting initial
vectors on computation efficiency for
subspace iteration method. Lam and
Bertolini'”

inverse iteration and multiple inverse

have developed selective repeated

iteration for accelerated reduction of
subspace.

19 have

Rajendran and Narasimhan
used another over-relaxation method. The
method proposed by Bathe and Ramaswamy
(1980) considers the acceleration of
individual vectors using individual over-
relaxation parameters, whereas the
method proposed by Rajendran and
Narasimhan considers the acceleration
of the subspace as a whole. Qian and
Dhatt¥ have accelerated the subspace
iteration by omitting some of the
Rayleigh-Ritz procedure from certain
iteration steps and obtaining a higher
convergence rate.

Among the above accelerated techniques,
a shifting technique is effectively used in
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the commercial FEM programs such as
ADINA"®. Since the singularity may
occur during the use of the shifting
technique in the accelerated scheme such
as the subspace iteration method with
shift, the shift must be within a limited
region to avoid the singularity.

This paper describes a technique which
always guarantees the numerical stability
and maintains the convergence rate of the
subspace iteration method with shift even
if it is an exact eigenvalue itself. The
theory and concept of the proposed
method are discussed briefly, and two
numerical examples are presented to
verify the effectiveness of the proposed
method.

2. Subspace (teration Method with Shift

The general eigenvalue problem of the

structural dynamics may be written as

follows.™®

KX=MXA (D

where K and M are the stiffness matrix
and the mass matrix of the discrete or
discretized system of order n, respectively,

the columns of X the eigenvectors, and
/Al a diagonal matrix with eigenvalues.

Applying a shift # to eqn (1) gives

(K—uM)X =MXQ (2)

where
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Q=A-pul 3)

and I is the unit matrix. Suppose that the p
smallest eigenvalues A; (i=1,2,...,p and

corresponding  eigenvectors x; are required.
Then the jth trial vector converges linearly to
x; at the rate of (A; — p)/(Aps) — ). For
faster convergence, q trial vectors are normally
used with ¢g=min{2p, p+8}.

If we have p initial independent vectors
x¥ (i=1,2,...,p) spanning p-dimensional
subspace in the neighborhood of the
subspace of the desired eigenvectors
and the approximate eigenvectors and

corresponding eigenvalues after k

iterations are denoted by x,gk) and /1,@,
the subspace iteration method with the
shift u for the kth iteration may be

described as follows:

Step 1. Find improved -eigenvectors
~(k+1) — {(k+1) — (k+1) — (k+1)
X = [ x4 X9 yeees Xg ]

*

by the simultaneous inverse iteration
method:

< (k+1)

(K—uM) X577 = Mx® (4)
where X**Y and X® are the (nxq)
matrices.
Step 2. Compute the projections of the

matrices (K — #M) and M onto the subspace

. < (k+1)
spanned by the q vectors in X :

—(&+1)

174 — —X(IH-I)T(K__ﬂM) T D (5)

ﬂ(k+1) _ —X(H DTM "X(H-l) ®)
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— (h+1 —
where K ) and )78 D

symmetric matrices. Step 3. Solve the

are the
eigenvalue problem of reduced order q;

== (k+1) = T (k+D)
K Q(k+l) M Q(k+ I)Q(/H-l) 7

where Q%' and Q%' are the (gx¢q)
matrices.

Step 4. Find an improved approximation

. &+
to the eigenvectors X'V from X ,

the (7 xgq) matrix of Ritz trial vectors, and
the (gxq@ projected system eigenvectors

k+1).
QY.

x D — gD QD (8)

And the improved eigenvalues can be
computed as follows.

A(k+l) — .Q(k+1)+ﬂ1 (9)

Then, provided that the trial vectors in

X% are not orthogonal to one of the
required eigenvectors and assuming an

appropriate ordering of the trial vectors,
A%V converges to A and XD
converges to X as k approaches infinity.
The convergence rate of the subspace

iteration method with shift is
(A = )/ Ggsr = 1. (10)

While the shifting procedure improves
the convergence rate of the subspace
iteration method, it needs extra operations.
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Therefore, shifting will only be performed
when a criterion determines that the
convergence will be improved sufficiently
to cover the cost of the extra triangular
factorization®.

If a shift is an eigenvalue itself or
very close to it, all iteration vectors
immediately converge to the eigenvector
corresponding to that eigenvalue. The
iteration vectors can then not be
orthogonalized any more and the iteration
procedure becomes unstable. If the shift is

very close to an eigenvalue, the last pivot

element in the LDLT factorization of the
coefficient matrix usually becomes small
compared with its original value and the
coefficient matrix becomes close to
singular. To avoid this singularity. that
is, to guarantee the stability of the
subspace iteration method with shift, the
following condition was adopted in the

subspace iteration method ®:

1.01 A <p<0.99 A, (11)

where A,—; is the calculated appro-

ximation to (s-1)th eigenvalue and ﬁs sth

eigenvalue. It means that a shift must be
within a limited region resulting in slow
convergence. Moreover, if the calculated
approximation to an eigenvalue slightly
differs from it. an eigenvalue may be
inside of the limited region. Then, the
singularity may occur although a shift is
inside of the limited region. These are the
significant disadvantages of the subspace
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iteration method with shift. The purpose
of this paper is to remove the limitation
in egqn (11) for choosing the value of a
shift u.

3. Proposed Method

3.1 Theory

Consider the simultaneous inverse
iteration step in the subspace iteration

method with shift:

XY = yx® (12)

(K- pM) X
Since if a shift is very close to an
eigenvalue in eqn (12) the singularity
occurs during the decomposition process,
The (k+1)th eigenvector approximations,

Y(kﬂ), can not be acquired. In this
study, to solve the singularity problem
the following procedures are proposed.

First, assume that a shift is close to ith
eigenvalue. Then, inverse iteration step
on the ith eigenvalue can be expressed as

follows:
— (&
(K —uM) ;%0 = d¥ O Mef® (13)
where the scalar df;“l) controls the
(k+1)

length of the vector 7c,- Because

there are only n equations with (n+1)

— (k+1)
unknowns, n components of  x; and

d¥P. in eaqn (13), one side condition
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must be introduced for the solution of egqn
(13). This condition is that the current

vector( x{®)is orthogonal to the incremental

vector( dx{®) with respect to M: that is,

xf") TMAx,w = (. (14)

Adding the mass orthonormality

relation, x,-(") M x,-(") =1, to the side
condition, eqn (14), yields
Ty H*Y =1 (15)
where
7Y = 2P 4 4z (16)

The inverse iteration step on the other
eigenvalues make use of the existing
equation, eqn (12): that is,

(K _ ﬂM) '._x‘i(k+1) —_ ij(k)

1mn

(j=1!2,""q,j#:z)

Writing eqns (13), (15) and (17) in
matrix form gives

K_#M Mx(k) T((IH'I) m(h)
¢ (k+1
M0 d;
(18)
where
#PTU G =0 G=1.2.....q,7%)
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LAY =40,...,0,1—d¥™),0,....00
is the row wvector of order q, and
e;=<0,...,0,1,0,...,0>is the row vector

of order q that all elements are zero
except for ith element with unity.

X*Y from eqn (18) is
®+Dih eqns (5) and (6)

instead of XV in eqn (4). Eqn (18) is

the main linear algebraic equation used in

Note that
used for X

the proposed method.

The coefficient matrix of eqn (18) is of
order (n+1), symmetric, and nonsingular.
The nonsingularity is one of the
significant advantages of the proposed
method and will be shown in the next

section.

3.2 Proof of the nonsingularity of the

coefficient matrix!'*"®

The most remarkable characteristic of the
proposed method is that nonsingularity is
always guaranteed. Let the coefficient
matrix of ean (18) be denoted by C, that
is

c=[ K—uM Mx®

r (19
xPM 0

If C is nonsingular when the shift g
becomes an exact eigenvalue, then it will

be also nonsingular for a non-close shift.

The resulting C* will be

¢ =] Ko ] 20

M0
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Nonsingularity of the proposed method
is, therefore, proved by introducing the
new eigenvalue problem of the resulting
matrix such as

CY=MYD (21)
where D and Y are the eigenvalue and

the associate eigenvector matrices of the

new eigenvalue problem, respectively, and

_[MO
M [0 1] (22)
Y=[v.,%,...,¥ss1] and
(23.24)

D=diag(y\, 72, ..., Yus1)

The eigenpairs of the eigenvalue

problem egn (21), y; and y; for

7=1,2,...,n+1, are as follows:

- Eigenvector y; : { i }, {xi}, ( xk}.

-1 1 0
k=1,2,...,n, k¥
“Eigenvalue 7, : —1, 1, (A;—4).

k=1,2,....,n, k¥i

Considering the determinant of egn
(21), the relationship can be obtained as

follows:

detC" = detM'detD=detMI] ;| 4=l Ar—A)
(25)

The determinant of C° is not zero

YT a2



because of detM+( by definition. The
nonsingularity of the coefficient matrix in
eqn (18) is shown. That is, the numerical
stability of the proposed method is proved
analytically., The proposed method, therefore, -
makes up for the disadvantage that the
subspace iteration method with shift has
the limitations: no limited regions are

needed in the proposed method.

3.3 Operation count and summary of
algorithm

Consider the number of Central Processor
operations in order to obtain an estimate of
the cost required for solving an eigenvalue
problem. The actual cost must include, of
the of the
Processor time. This time is, however,

course, cost, Peripheral

not considered in this investigation since

programming technique.

Let one operation equal to one multi~
plication which is nearly always followed
by an addition. Assume that the half-
bandwidths of K and M are mx and

The

subspace iteration method with shift with

my, respectively. steps for the

the operations are summarized in Table 1,
and for the proposed method in Table 2.

The of of the
subspace iteration method with shift is

number operations

Tan Cmg+dmy+2¢+4)+
n(m+ 3muct 2my+2)
and that for the proposed method.
T, {gn(2mg+4my+29+5)+

n(my )} mi+ 3mg+ 2myt 2)

it depends on the system and the
Table 1. Operation Count for Subspace lteration Method with Shift
Operation Célculéﬁon Number of Operations
Multiplication K—uM n(my+1)
Factorization LDLT= K—uM nmg(myg+3)/2
Iteration MX® gn(2my+1)
Multiplicii?; . (K — ﬂM) T((“l) - MX(k) qn(me+ 1)
Solve for X ‘E(k"'l) _ 7{(’@+1)TM X an(Zmy+1)
e X
Multiplication M = X MX gn(q+1)/2
Solve for Q(k“) & Q(k+1) ’K(IH D Q(k+1)= Tl(kﬂ) Q(k+1)g(k+l) 0(03) neglected
Multiplication XD = -X'OH b Q(Hl) nqz
Subtotal {gn(Zmg+Amy+2q+4)
Sturm Sequence Check K— A M n(my+1)
Multiplication
Factorization LDL"=K— M nmy(mg+3)/2
Total Tan(2mg+4dmy+2q+4)+ n(mi+3mg+ 2my+2)

H 102 3% 19983 98
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Table 2. Operation Count for the Proposed Method

Operation Calculation Number of Operations
Iteration
k=0 _
o K—uM n(my+1)
Multiplication )
Multiplication MX gn(2my+1)
Change the last column of K — M into Mx,m) neglected
Factoricarion LDLT = F® mm(mg+5)/2+n
k=12,...
Multiplication MX® an(2my+1)
Change the last column of K — pM into Mx,‘(O) neglected
Factoricarion LDLT = p+D n(meg+1)
(k+1) (k+1) __
po F X =R 2gn(mg+1)
Solve for (k+D) _ R+ DT ®
Multiplication K = X MX gn(q+1)/2
Multiplication ~ M X an(2my+1)
Multiplication S k+D _ DT = (kD)
(e+1) g k+1) M = MX gn(g+1)/2
Solve for @ &0 (k41 k)= D (k1) AR+F]D) 0((13) neglected
= egliecC
Multiplication K o M Q Q g
XD — 7((’”1) QU*D ng
Subtotal an(2my+4dmy+2q+5)+ n(mg+1)
Sturm Sequence Check K~ M n(my+1)
Multiplication
Factorization LDL"=K— A M nmy(my+3)/2
Total T qn(2my+ dmy+2q+5) + n(mp., D mi+ 3mgt 2my+2)
where iteration of the proposed method( N,),
D [ K—uM M (P that of the subspace iteration method
08 ’
Xi 0 with shift( N,) and the difference of the
QD _ ‘j{(’”)”] operation count per iteration for above
= k+1
a;* two methods( N,—N,) as follows:
)
R=[ Mx ] (see eqn (18))
e; . Ne _ Ns
raho = N
»
The proposed method needs more _ gn+n(mg+1)
operations per each iteration step, T gn(2myg+Amyt+29+5) + n(mg+1)
gn+ n(mg+1), than the subspace iteration (26)
method with shift. Assume that the ratio
is composed of the operation count per Then, if the half-bandwidth of the
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stiffness matrix( mg) is equal to that of

the mass matrix( my), the above ratio can

be approximated as follows:
'y N _J_
ratio 6q - (27)

This ratio means that the larger the
number of the required eigenpairs is, the
smaller is the ratio of the difference of
the operation count to the system degree
of freedom. That is, the number of
operations for the aforementioned two
methods, the subspace iteration method
with shift and the proposed method, is
almost the same when the number of

eigenpairs to be required is large.

4. Numerical Examples

The plane framed structure and the
three-dimensional framed structure used
by Bathe and Wilson(2) are analyzed to
verify the effectiveness of the proposed
method. With the predetermined error
norm of 107, the structures are analyzed
by two methods: the subspace iteration
method with shift which is not used the
limited region(see eqn (11)) and the
proposed method, where the error norm is
computed by the following equation:

(K= 2 x|l
||sz§k)||2

error  norm =

(28)

H 102 3% 198 98

Even if a shift is on or very close to an
eigenvalue, it is shown that the proposed
method can obtain the solutions without
any singularity, When a shift is not close
to an eigenvalue, each convergence rate
for caleulating the first ten eigenpairs is
compared. All runs are executed in the
IRIS4D~20-817 with 10 Mips and 0.9
Mflops.

4.1 Plane framed structure

The first example is a plane framed
structure. The geometric configuration and
the material properties are shown in
Figure 1. The structure discretized using
210 beam elements resulting in system of
dynamic equations with a total of 330
degrees of freedom. The consistent mass
matrix is used for M. Some results are
shown in Table 3 and in Figures 2 to 7.
The solution time for two methods are

W W BN WD PR mE BT we WE B

?H‘,.A. e 61-0 o H‘

I=8.6312 x10 " *m*

A=0.218Tm?,
p="5.154 x 10%kg/ m®

E=2.068%10" Pa,

Fig 1. Plane framed structure
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Table 3. Solution time for the lowest ten sigenvalues of the

plane framed structure

Analysis methods

Solution time, sec (ratio)

Subspace iteration method with shift

201.85 (1.00)

Shift = 1.01 A,

Propesed method

204.78 (1.01)

Subspace iteration method with shift

No solution

Shift = Az

Proposed method

204.35

summarized in Table 3. When a shift is
on 1.01 43, the subspace iteration method

with shift and the
calculate the

proposed method
required ten eigenpairs.

However, when the shift is on A3, the

subspace iteration method with shift does
not find the solutions while the proposed
method obtains the solutions. It shows
that the the
proposed method can converge without

iteration procedure for

any singularity even if the shift is the

same exactly to an eigenvalue, as
analytically proved in the article 3.2. This
is one of the significant advantages of the
proposed method.

the

convergence of each eigenpair is depicted

For each solution method,

in Figures 2 to 7. Figures 2 to 4 show
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Fig 4. Error norm versus iteration number of
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that when the shift is on 1.01 A3 the

convergence of the proposed method is
nearly equal to that of the accelerated
subspace iteration method. Figures 5 to 7

show that when the shift is the same
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exactly to the third eigenvalue the
proposed method converges very well
while the subspace iteration method
with shift can not converge due to the
singularity. As the above results, the
proposed method can choose a more exact
shift than the subspace iteration method
with shift, thus the proposed method may
be the more computationally efficient.

4.2 Three-dimensional framed structure

The second example is the three-
dimensional framed structure. Figure 8
shows the geometric configuration and
material properties. The structure
discretized using 100 beam elements
resulting in system of dynamic eqns with

a total of 468 degrees of freedom. The

consistent mass matrix is used for M.
Some resuits are shown in Table 4 and
in Figures 9 to 14. The solution time for
two methods are summarized in Table 4.
When a shift is on 1.01 A5, the subspace

iteration method with shift and the
proposed method obtain the required ten
eigenpairs. However, when the shift is on

As. the subspace iteration method with

shift does not calculate the solutions
while the proposed method finds the
solutions.

It shows that the iteration procedure
for the proposed method can converge
without any singularity even if the shift
is the same exactly to an eigenvalue, as
analytically proved in the article 3.2.
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Fig 9. Error norm versus iteration number of
the first eigenpair of the three-
dimensional framed structure in case of

shift = 1.01 As.

Table 4. Solution time for the lowest ten eigenvalues of the 3-dim. framed structure

Analysis methods

Solution time, sec (ratio)

Subspace iteration method with shift

485.36 (1.00)

Shift = 1.01 A
5 Proposed method

492.16 (1.01)

Subspace iteration method with shift

No solution

Shift = A
5 Proposed method

491.70
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Fig 12. Error norm versus iteration number of
the first eigenpair of the three-
dimensional framed structure in case

of shift = As.
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Fig 13. Error norm versus iteration number of
the fifth eigenpair of the three-
dimensional framed structure in case

of shift = As.
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Fig 14. Error norm versus iteration number of

the tenth eigenpair of the three-
dimensional framed structure in case of
shift = A5.
proposed method can choose a more
aggressive shift than the subspace
iteration method with shift.
5. Conclusion
This paper proposes a numerically

stable acceleration technique using side
conditions for the improvement of the
subspace iteration method with shift. The
characteristics of the proposed method



identified by the

numerical results from numerical examples

analytical and the

are summarized as follows:

(1) The nonsingularity of the proposed
method
proved analytically: even if the shift is an

is always guaranteed, which is

eigenvalue itself, the proposed method can
obtain the solutions without any singularity.

(2) The convergence rate of the proposed
method is at least equal to that of the
subspace iteration method with shift, and the
operation counts of the proposed method and
the subspace iteration method with shift are

almost the same when the number of

eigenpairs to be required is large.
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