• Title/Summary/Keyword: eigenvalue problem.

Search Result 556, Processing Time 0.024 seconds

A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • The current article studied wave propagation in a nonlocal porous thermoelastic half-space with temperature-dependent properties. The problem is solved in the context of the Green-Lindsay theory (G-L) and the Lord- Shulman theory (L-S) based on thermoelasticity with memory-dependent derivatives. The governing equations of the porous thermoelastic solid are solved using normal mode analysis with an eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out, and the effect of local parameter and temperature-dependent properties on the physical fields are presented graphically.

MULTIPLE SOLUTIONS FOR THE SYSTEM OF NONLINEAR BIHARMONIC EQUATIONS WITH JUMPING NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.551-560
    • /
    • 2007
  • We prove the existence of solutions for the system of the nonlinear biharmonic equations with Dirichlet boundary condition $$\{^{-{\Delta}^2u-c{\Delta}u+{\gamma}(bu^+-av^-)=s{\phi}_1\;in\;{\Omega},\;}_{-{\Delta}^2u-c{\Delta}u+{\delta}(bu^+-av^-)=s{\phi}_1\;in\;{\Omega}}$$, where $u^+$ = max{u, 0}, ${\Delta}^2$ denotes the biharmonic operator and ${\phi}_1$ is the positive eigenfunction of the eigenvalue problem $-{\Delta}$ with Dirichlet boundary condition.

  • PDF

Efficient Local Vibration Analysis of Large Steel Frames (대형철골구조물의 효율적인 국부진동해석)

  • 이동근;송종걸;정길영;김우범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.105-112
    • /
    • 1994
  • In a local vibration analysis of a large steel frame, a large eigenvalue problem results. Due to computer storage and the expense of a complete solution, it is desirable to minimize the size of the resulting matrices. A new and efficient method of local vibration analysis for large steel frames is presented. It reduces the order of dynamic matrices by dynamic condensation method. Examples are given for local vibration of a plane frame. Results are compared to the complete solution of the full eigenvalue problem.

  • PDF

RICHARDSON EXTRAPOLATION OF ITERATED DISCRETE COLLOCATION METHOD FOR EIGENVALUE PROBLEM OF A TWO DIMENSIONAL COMPACT INTEGRAL OPERATOR

  • Panigrahi, Bijaya Laxmi;Nelakanti, Gnaneshwar
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.567-584
    • /
    • 2014
  • In this paper, we consider approximation of eigenelements of a two dimensional compact integral operator with a smooth kernel by discrete collocation and iterated discrete collocation methods. By choosing numerical quadrature appropriately, we obtain convergence rates for gap between the spectral subspaces, and also we obtain superconvergence rates for eigenvalues and iterated eigenvectors. We then apply Richardson extrapolation to obtain further improved error bounds for the eigenvalues. Numerical examples are presented to illustrate theoretical estimates.

INFINITELY MANY SOLUTIONS OF A WAVE EQUATION WITH JUMPING NONLINEARITY

  • Park, Q-Heung;Jung, Tack-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.943-956
    • /
    • 2000
  • We investigate a relation between multiplicity of solutions and source terms of jumping problem in wave equation when the nonlinearity crosses an eigenvalue and the source term is generated by finite eigenfunctions. We also show that the jumping problem has infinitely many solutions when the source term is positive multiple of the positve eigenfunction.

  • PDF

NUMERICAL STABILITY OF UPDATE METHOD FOR SYMMETRIC EIGENVALUE PROBLEM

  • Jang Ho-Jong;Lee Sung-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.467-474
    • /
    • 2006
  • We present and study the stability and convergence of a deflation-preconditioned conjugate gradient(PCG) scheme for the interior generalized eigenvalue problem $Ax = {\lambda}Bx$, where A and B are large sparse symmetric positive definite matrices. Numerical experiments are also presented to support our theoretical results.

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.

Eigenvalue analysis of axisymmetric circular Mindlin plates by pseudospectral method

  • Lee, Jinhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.44-49
    • /
    • 2002
  • A study of free vibration of axisymmetric circular plates based on Mindlin theory using a pseudospectral method is presented. The analysis is based on Chebyshev polynomials that are widely used in the fluid mechanics research community. Clamped, simply supported and flee boundary conditions are considered, and numerical results are presented for various thickness-to-radius ratios.