• Title/Summary/Keyword: eigenvalue comparison

Search Result 85, Processing Time 0.023 seconds

A Study on Referents and Inputs in Pay Comparisons (임금비교에 있어서 비교대상 및 비교기준에 관한 연구)

  • Hong, Kwang-Hoon
    • Management & Information Systems Review
    • /
    • v.19
    • /
    • pp.223-241
    • /
    • 2006
  • This study has two purposes. One is to systematize a number of referents and to examine the types of comparisons. The other is to examine categories of comparative standards such as inputs in equity theory. In pay comparison process, referents and inputs are very important elements. The first factor analysis is related to referents, which include 18 variables in 6 categories were subjected to factor analysis. 3 factors emerge with an eigenvalue of 1.0 or greater. Factor I, economic need, includes referents in personal worth and system referent. Factor II, market comparison, includes internal and external referents except one variable(external-peer). Between internal and external referents is not distinguished. This result is corresponded with Hills'(1980) and Hong's(1995) findings. FactorIII is named 'historical/social comparisons'. 14 inputs are subjected to the second factor analysis. 3 factors emerge with an eigenvalue of 1.0 or greater. The 5 variables loading on factor I, equity standard, are responsibility, competency, effort, outcome, and skill. FactorII, equality standard, includes age, gender, and education. FactorIII, seniority standard, includes career and company tenure. All the factors are positively associated with each other. Especially, personal worth is associated with equity standard(r=0.50466). Internal and external referents are associated with any comparative standard.

  • PDF

Eigenvalue Analysis and Detection of Low Frequency Oscillation using PMU Data in KEPCO System (위상동기신호를 이용한 한전계통의 저주파진동 검출과 고유치해석)

  • Shim, Kwan-Shik;Kim, Sang-Tae;Kim, Tae-Kyun;Ahn, Seon-Ju;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.261-284
    • /
    • 2017
  • This paper describes the results of a low-frequency oscillation analysis using data measured in PMU installed in the KEPCO system, and the comparison with eigenvalues computed from the linear model. The dominant oscillation modes are estimated by applying various algorithms. The algorithms are: the extended Prony method; multiple time interval parameter estimation method; subspace system identification method; and spectral analysis. From the measurement data, modes of frequency 0.68[Hz] and 0.92[Hz] were estimated, and modes of frequency 0.63[Hz] and 0.80[Hz] were computed from the eigenvalue calculation. There was a difference between the mode estimated from measurement data and that from the linear model. This is possibly because of an error in the dynamic data of the KEPCO system used in eigenvalue calculation. Because wide area modes exist in the KEPCO system, these modes should be monitored continuously for the reliable operation of the system. In order to prevent total blackouts caused by wide area oscillation, moreover, contingency analysis should be performed in relation to this mode and appropriate measures should be established.

An accurate approach for buckling analysis of stringer stiffened laminated composite cylindrical shells under axial compression

  • Davood Poorveis;Amin Khajehdezfuly;Mohammad Reza Sardari;Shapour Moradi
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.543-562
    • /
    • 2024
  • While the external axial compressive load is applied to only the shell edge of stringer-stiffened shell in the most of numerical and analytical previous studies (entitled as conventional approach), a part of external load is applied to the stringers in real conditions. It leads to decrease the accuracy of the axial buckling load calculated by the conventional eigenvalue analysis approach performed in the most of previous studies. In this study, the distribution of stress in the pre-buckling analysis was enhanced by applying the axial external compressive load to both shell and stringers to perform an accurate eigenvalue analysis of the stringer-stiffened composite shell. In this regard, a model was developed in FORTRAN environment to simulate the laminated stringer-stiffened shell under axial compressive load using finite strip method. The axial buckling load of the shell was obtained through eigenvalue analysis. A comparison was made between the results obtained from the model and those available in the previous studies to evaluate the validity of the results obtained from the model. Through a parametric study, the effects of different parameters such as stringer properties and composite layup on the buckling load of the shell under different loading patterns were investigated. The results indicated that in some cases, the axial buckling load obtained for the conventional approach used in the most of previous studies is significantly overestimated or underestimated due to neglecting the stringer in distribution of external load applied to the stringer-stiffened shell. According to the results obtained from the parametric study, some graphs were derived to show the accuracy of the axial buckling load obtained from the conventional approach utilized in the literature.

Identification of Correlative Transmission Lines for Stability Diagnosis of Power System (전력계통의 안정도 진단이 가능한 선로 선정에 관한 연구)

  • 조윤성;장길수;권세혁
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.5
    • /
    • pp.271-278
    • /
    • 2003
  • Power system stability is correlated with system structure, disturbances and operating conditions, and power flows on transmission lines are closely related with those conditions. This paper proposes a methodology to identify correlative power flows for power system transient and small-signal stability prediction. In transient stability sense, the Critical Clearing Time is used to select some dominant contingencies, and Transient Stability Prediction index is proposed for the quantitative comparison. For small-signal stability, this paper discusses a methodology to identify crucial transmission lines for stability Prediction by introducing a sensitivity factor based on eigenvalue sensitivity technique. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a Procedure to make a priority list of monitored transmission lines is proposed. The procedure is applied to a test system and the KEPCO systems in the year of 2003 and it shows capabilities of the proposed method

Statistical Characteristics of Response Consistency Parameters in Analytic Hierarchy Process (AHP에서의 응답일관성 모수의 통계적 특성과 활용 방안)

  • 고길곤;이경전
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.4
    • /
    • pp.71-82
    • /
    • 2001
  • Using the computer simulation method, we invest19ate the probability distribution of maximum eigenvalue of pair-wise comparison matrix, which has been used as a parameter for measuring the consistency of responses in analytic hierarchy process (AHP). We show that the shape of the distribution of the maximum eigenvalue is different according to the dimension of the matrix. In addition, we cannot find any evidence that the distribution of the Consistency Index is a Normal distribution, which has been claimed in the Previous literature. Accordingly, we suggest using so called K-index calcu1ated based on the concept of cumulative distribution function lather than based on that of arithmetic mean because the probabilistic distribution cannot be assumed to be a Normal distribution. We interpret the simulation results by comparing them with the suggestion of Saaty[11]. Our results show that using Saaty's value could be too generous when the dimension of the matrix is 3 and strict over 4. Finally, we propose new criteria for measuring the response consistency in AHP.

  • PDF

Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions

  • Ibrahimbegovic, Adnan;Hajdo, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.349-374
    • /
    • 2013
  • In this work we propose a novel procedure for direct computation of buckling loads for extreme mechanical or thermomechanical conditions. The procedure efficiency is built upon the von Karmann strain measure providing the special format of the tangent stiffness matrix, leading to a general linear eigenvalue problem for critical load multiplier estimates. The proposal is illustrated on a number of validation examples, along with more complex examples of interest for practical applications. The comparison is also made against a more complex computational procedure based upon the finite strain elasticity, as well as against a more refined model using the frame elements. All these results confirm a very satisfying performance of the proposed methodology.

Power Spectral Estimation of Background EEG with LMS PHD (LMS PHD에 의한 배경단파 파워 스펙트럼 추정)

  • 정명진;최갑석
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.101-108
    • /
    • 1988
  • In this paper the power spectrum of background EEG is estimated by the LMS PHD based on least mean square. At the power spectrum estimatiom, the stocastic process of background EEG is assumed to consist of the nonharmonic sinusoid and the white noise. In the LMS PHD the model parameters are obtained by the least mean square at optimal order which is obtained from the fact that the eigenvalue's fluctuation of autocorrelation matrix of the normal back-ground EEG is smaller at some order than at other order when the power spectrum of background EEG is esitmated by PHD. The optimal order of this model is the 6-th order when the eigenvalue's fluctuation of autocorrelation matrix of background EEG is considered. The estimation results are with compared the results from the Maximum Entropy Spectral Estimation and Pisarenko Harmonic Decomposition. From the comparison results. The LMS PHD is possible to estimate the power spectrum of background EEG.

  • PDF

Optimization and dynamic characteristics of the hybrid type vacuum pump (하이브리드 타입 진공펌프의 동특성 및 최적화)

  • Kim, Yong-Hwi;Lee, Jong-Myeong;Ahn, Byeong-Hyun;Ha, Jeong-Min;Choi, Byeong-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.306-310
    • /
    • 2014
  • The purpose of this study is the stability evaluation of a vacuum pump through modal test and rotor dynamics. Eigenvalue was solved by the finite-element method(FEM) using 2D and 3D models, then the modal test result was compared with the FEM result. According to the comparison, the analysis result using the 2D was more accurate than the 3D model. Therefore, rotor dynamics was performed by the 2D model. Campbell diagram and root-locus maps, which were calculated by complex-eigenvalue analysis, were used to evaluate the stability of the rotors of the vacuum pump. And displacement solved by unbalance response analysis was compared with the minimum clearance between two rotors of the vacuum pump. Thus, the vacuum pump is assumed operated under steady state through the evaluation of the rotor dynamics.

  • PDF

Free vibrations of arbitrary quadrilateral thick plates with internal columns and uniform elastic edge supports by pb-2 Ritz method

  • Wu, L.H.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.267-288
    • /
    • 2012
  • Free vibration analysis of arbitrary quadrilateral thick plates with internal columns and elastic edge supports is presented by using the powerful pb-2 Ritz method and Reddy's third order shear deformation plate theory. The computing domain of arbitrary quadrilateral planform is mapped onto a standard square form by coordinate transformation. The versatile pb-2 Ritz functions defined by the product of a two-dimensional polynomial and a basic function are taken to be the admissible functions. Substituting these displacement functions into the energy functional and minimizing the total energy by differentiation, leads to a typical eigenvalue problem, which is solved by a standard eigenvalue solver. Stiffness and mass matrices are numerically integrated over the plate by using Gaussian quadrature. The accuracy and efficiency of the proposed method are demonstrated through several numerical examples by comparison and convergency studies. A lot of numerical results for reasonable natural frequency parameters of quadrilateral plates with different combinations of elastic boundary conditions and column supports at any locations are presented, which can be used as a benchmark for future studies in this area.

A photo-thermal interaction in semi-conductor medium with cylindrical cavity by analytical and numerical methods

  • Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.267-273
    • /
    • 2021
  • In this work, we compare the analytical solutions with the numerical solutions for photothermal interactions in semiconductor medium containing cylindrical cavity. This paper is devoted to a study of the photothermal interactions in semiconductor medium in the context of the coupled photo-thermal model. The basic equations are formulated in the domain of Laplace transform and the eigenvalue scheme are used to get the analytical solutions. The numerical solution is obtained by using the implicit finite difference method (IFDM). A comparison between the analytical solution and the numerical solutions are obtained. It is found that the implicit finite difference method (IFDM) is applicable, simple and efficient for such problems.