• Title/Summary/Keyword: effluent of sediment and nutrient materials

Search Result 3, Processing Time 0.018 seconds

Field Observation for the effluent of sediment and nutrient on the Coastal Area (연안역의 토사 및 영양염류 유출에 관한 현지관측)

  • Lee Guk-Jin;Kim In-Soo;Ikeda Shunsuke
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.113-118
    • /
    • 2005
  • We studied field observation and countermeasure about the effluent of sediment and nutrient materials on the Okinawa Ishigaki Coast according rainy season though this observation, we found out the analysis of outflow topography, intensity of rainfall and effects on the tide, the property of effluent materials ete. The sediment and nutrient concentration of the Okinawa Ishigaki coast are different on the regional sites according to vary with time variation of intensity of rainfall and the ebb and flow. We could confirm to vary with utilized waterways land area and distribution of surrounding vegetation.

Field Observation and Countermeasure for the effluent of sediment and nutrient on the Okinawa Ishigaki Island (연안역의 토사 및 영양염류 유출에 관한 현지관측 및 대안)

  • 이국진;김인수;지전준개
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.241-246
    • /
    • 2004
  • We studied field observation and countermeasure about the effluent of sediment and nutrient materials on the Okinawa Ishigaki Coast according rainy season. though this observation, we found out the analysis of outflow topography, intensity of rainfall and effects on the tide, the property of effluent materials etc. The sediment and nutrient concentration of the Okinawa Ishigaki coast are different on the regional sites according to vary with time variation of intensity of rainfall and the ebb and flow. We could confirm to vary with utilized waterways land area and distribution of surrounding vegetation.

  • PDF

A Study on the Application of a Turbidity Reduction System for the Utilization of Thermal Wastewater in High Turbidity Zones (고탁도 해역의 온배수 활용을 위한 탁도저감시스템 적용에 대한 연구)

  • Ha, Shin-Young;Oh, Cheol;Gug, Seung-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.916-922
    • /
    • 2018
  • Recently, power plant effluent condensers received a Renewable Energy Certificate as components of hydrothermal energy (weighted 1.5 times) as one target item of the Renewable Portfolio Standard (RPS) policy. Accordingly, more attention is being paid to the value of thermal wastewater as a heat source. However, for utilization of thermal wastewater from power plants in high-turbidity areas like the West Sea of Korea, a turbidity reducing system is required to reduce system contamination. In this study, an experimental test was performed over a month on thermal wastewater from power plants located in the West Sea of Korea. It was found that water turbidity was reduced by more than 80 % and that the concentration of organic materials and nutrient salts was partially reduced due to the reduction of floating/drifting materials. To conduct a comparative analysis of the level of contamination of the heat exchanger when thermal wastewater flows in through a turbidity reducing system versus when the condenser effluent flows in directly without passing through the turbidity system, we disassembled and analyzed heat exchangers operated for 30 days. As a result, it was found that the heat exchanger without a turbidity reducing system had a higher level of contamination. Main contaminants (scale) that flowed in to the heat exchanger included minerals such as $SiO_2$, $Na(Si_3Al)O_8$, $CaCO_3$ and NaCl. It was estimated that marine sediment soil flowed in to the heat exchanger because of the high level of turbidity in the water-intake areas.