DOI QR코드

DOI QR Code

A Study on the Application of a Turbidity Reduction System for the Utilization of Thermal Wastewater in High Turbidity Zones

고탁도 해역의 온배수 활용을 위한 탁도저감시스템 적용에 대한 연구

  • Ha, Shin-Young (Research institute of maritime industry, Korea Maritime and Ocean University) ;
  • Oh, Cheol (Division of Marine Engineering, Korea Maritime and Ocean University) ;
  • Gug, Seung-Gi (Department of Coast Guard Studies, Korea Maritime and Ocean University)
  • 하신영 (한국해양대학교 해사산업연구소) ;
  • 오철 (한국해양대학교 기관공학과) ;
  • 국승기 (한국해양대학교 해양경찰학과)
  • Received : 2018.10.10
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

Recently, power plant effluent condensers received a Renewable Energy Certificate as components of hydrothermal energy (weighted 1.5 times) as one target item of the Renewable Portfolio Standard (RPS) policy. Accordingly, more attention is being paid to the value of thermal wastewater as a heat source. However, for utilization of thermal wastewater from power plants in high-turbidity areas like the West Sea of Korea, a turbidity reducing system is required to reduce system contamination. In this study, an experimental test was performed over a month on thermal wastewater from power plants located in the West Sea of Korea. It was found that water turbidity was reduced by more than 80 % and that the concentration of organic materials and nutrient salts was partially reduced due to the reduction of floating/drifting materials. To conduct a comparative analysis of the level of contamination of the heat exchanger when thermal wastewater flows in through a turbidity reducing system versus when the condenser effluent flows in directly without passing through the turbidity system, we disassembled and analyzed heat exchangers operated for 30 days. As a result, it was found that the heat exchanger without a turbidity reducing system had a higher level of contamination. Main contaminants (scale) that flowed in to the heat exchanger included minerals such as $SiO_2$, $Na(Si_3Al)O_8$, $CaCO_3$ and NaCl. It was estimated that marine sediment soil flowed in to the heat exchanger because of the high level of turbidity in the water-intake areas.

는 열교 환기를 세척할 때 최근 신재생에너지의무화제도(RPS: Renewable Portfolio Standard)대상 신재생에너지 항목에 발전소 온배수가 신재생에너지공급인증서(REC:Renewable Energy Certificate)의 수열에너지(가중치 1.5)로 추가되어 온배수 열원에 대한 가치가 높아졌다. 본 연구에서는 고탁도지역 온배수의 직접적인 활용을 위한 방안으로 히트펌프시스템 내 탁도저감장치를 도입하여 열교환기에 가해지는 오염물질의 저감 효과를 확인해보기 위해 한 달 동안 실증테스트를 실시하였다. 실험결과 탁도 저감효과가 80 % 이상으로 고탁도 지역의 온배수 활용을 위한 방안으로 탁도저감장치의 적용가능성을 확인 할 수 있었다. 또한 탁도저감시스템에 따른 열교환기의 오염도 저감 효과를 검증하기 위해 30일간 운전한 열교환기를 해체하여 분석해본 결과 탁도저감시스템을 거친 열교환기보다 그렇지 않은 열교환기의 오염정도가 높은 것을 확인하였다. 열교환기에 유입된 오염물질(스케일)을 분석해본 결과 주로 $SiO_2$, $Na(Si_3Al)O_8$, $CaCO_3$, NaCl 성분의 광물이 검출되었는데 이는 높은 탁도로 인해 해양퇴적토가 열교환기에 유입된 것으로 분석되었다. 그 외에도 소량이지만 $TiO_2$, MnO, $Cr_2O_3$가 검출되었다. 이는 열교환기를 세척할 때 열교환기 재료로부터 기인한 중금속이 소량 용출된 것으로 판단된다.

Keywords

References

  1. Alfa Laval(2015), Alfa Laval M6-MFG.
  2. Hwang J. H., Na B. C., Oh S. K., Koo K. M., Lee J. K., Ahn Y. C. (2015), Fouling Characteristics of Washable Shell and Coil Heat Exchanger, The Society Of Air-Conditioning And Refrigerating Engineers Of Korea, pp. 69-74.
  3. Jeon, K. S., Y. D. Choi, K. J. Cheon, J. K. Kim, K. C. Jeong, Y. G. Lee and H. G. Park(1994), Analysis of Chemical Factiors Affecting Marine Ecosystem around Nuclear Power Plant, KAERI/RR, 1310/94.
  4. Kang, Y. G. (2015), Effects of Industrial Waste Heat on Agricultural Utilization (Case analysis), The Korean Association for Public Administration International Conference, 12, pp. 1654-1662.
  5. Kang, Y. G., S. H. Kim, J. K. Kwon and Y. S. Ryou(2017), Agricultural Application of Hot Waste Water of Thermal Power Plants, The Korean Society for New and Renewable Energy Conference, 5, p. 149.
  6. Kim D. J., H. S. Ryu and S. Y. Shin(2006), The Performance Estimation of Pressure-Type Rapid Automatic Filter, The Society Of Air-Conditioning And Refrigerating Engineers Of Korea, pp. 607-612.
  7. MEIS(2015), Marine environment measurement data, http://www.meis.go.kr/.
  8. MOF(2018), Ministry of Oceans and Fisheries, Marine environmental process test standard.
  9. Park, Y. C., S. J. Kim, E. S. Kim, H. J. Lee, H. J. Lee and D. H. Kim(2007), A Study on Seawater Quality Criteria and Asseement of Thermal Discharge from Nuclear Power Plant, Journal of the Korean Society of Oceanography, Vol. 12, No. 1, pp. 50-56.
  10. Seon, Y. H. (2012), A Study on the Removal of Organics and Disinfection Effect in Sand Filter Using Nano Silver Sand, Korean Society for Biotechnology and Bioengineering Journal, Vol. 27 No. 1, pp. 16-20.
  11. Thonon, B., S. Grandgeorge and C. Jallut(1999), Effect of geometry and flow conditions on particulate fouling in plate heat exchangers, Heat Transfer Engineering, Vol. 20, No. 3, pp. 13-25.