DOI QR코드

DOI QR Code

A Geo-statistical Assessment of Heavy Metal Pollution in the Soil Around a Ship Building Yard in Busan, Korea

통계지표를 활용한 부산지역 조선소 주변 토양 내 중금속 오염조사 연구

  • Choi, Jung-Sik (Division of Marine Engineering & Coast guard, Mokpo National Maritime University) ;
  • Jeon, Soo kyung (Daejeon Institute, National Forensic Service)
  • 최정식 (목포해양대학교 기관.해양경찰학부) ;
  • 전수경 (국립과학수사연구원 대전과학수사연구소)
  • Received : 2018.01.23
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

With the increase of metal usage in various industries, metal pollution and ecological toxicity in the environmental system have become a significant concern. A geo-statistical index has been widely used to determine contamination level with normalization through a background value. In this study, geo-statistical indexes such as an enrichment factor, accumulation index, and potential ecological risk index were used to assess metal pollution in soil at locations associated with shipbuilding manufacturing industries. Metal contamination, especially of Cu and Pb, was observed in some samples located closer to manufacturing sites. Enrichment factor and accumulation (IGEO) values were indicative of concerning levels of soil contamination in specific samples, and the soil contamination could be induced by anthropogenic sources. In further study, after more detailed sampling for soil and potential pollution sources, high interpretation techniques such as Pb isotope analysis and X-ray analysis will be needed to investigate source identification.

다양한 산업분야에서 중금속의 사용이 증가할수록, 중금속으로 인한 환경오염과 생물학적 위해성에 대한 우려의 목소리가 커지고 있다. 통계 지수는 배경농도 값과의 비교를 통해 중금속 오염농도를 정규화 시킴으로써 토양 오염의 정도를 수치화하고, 단계 별로 오염 정도를 판단 할 수 있어 많이 사용된다. 본 연구에서는 농축인자(Enrichment factor, EF), 축적 계수(accumulation index), 잠재적 생물학적 위험 지표(potential ecological risk index)등을 이용하여 중공업 근처 토양 내 중금속 오염가능성을 평가하였다. 연구결과, 중금속의 오염 정도는 정부 가이드라인에 비하여 낮은 수준이었으나, 특정 위치에서 아연, 구리, 납 등의 중금속 오염이 관찰 되었다. 농축인자, 축적계수, 생물학적 위험 지표를 통해 일부 토양 내 중금속 오염이 우려할 수준이며, 주변에 존재하는 인위적 오염원에 의한 오염가능성이 있음을 확인하였다. 연구대상지의 추가 시료채취 및 추정되는 오염원의 시료 확보 후, 동위원소 분석 및 x-ray 기반 분석을 통해 오염원 추적연구가 필요할 것으로 판단된다.

Keywords

References

  1. Acero, P., J. Mandado, J. Gomez, M. Gimeno, L. Auque and F. Torrijo(2003), Environmental impact of heavy-metal dispersion in the Huerva River (Iberian Range, NE Spain), Environmental Geology, 43(8), pp. 950-956. https://doi.org/10.1007/s00254-002-0717-6
  2. Adamo, P., M. Arienzo, M. Imperato, D. Naimo, G. Nardi and D. Stanzione(2005), Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere, 61(6), pp. 800-809. https://doi.org/10.1016/j.chemosphere.2005.04.001
  3. Cevik, F., M. Z. L. Goksu, O. B. Derici and O. Findik(2009), An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses, Environmental Monitoring and Assessment, 152(1), pp. 309-317. https://doi.org/10.1007/s10661-008-0317-3
  4. Chen, C. W., C. M. Kao, C. F. Chen and C. D. Dong(2007), Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan, Chemosphere, 66(8), pp. 1431-1440. https://doi.org/10.1016/j.chemosphere.2006.09.030
  5. Dudzik, K., and M. Czechowski(2009), Analysis of possible shipbuilding application of Friction Stir Welding (FSW) method to joining elements made of AlZn5Mg1 alloy, Polish Maritime Research, 16(4), pp. 38-40. https://doi.org/10.2478/v10012-008-0054-0
  6. EPA(1997), EPA Office of Compliance Sector Notebook Project: Profile of the Shipbuilding and Repair Industry [1.5 MB PDF, 135 pages]. U.S. Environmental Protection Agency, Office of Compliance, Office of Enforcement and Compliance Assurance, Washington, D.C. Document No. EPA/310-R-97-008, November.
  7. EPA(2000), A Guide for Ship Scrappers - Tips for Regulatory Compliance. U.S. Environmental Protection Agency, Office of Enforcement and Compliance Assurance, Federal Facilities Enforcement Office, EPA 315-B-00-001, Summer 2000.
  8. Feng, H., X. Han, W. Zhang and L. Yu(2004), A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization, Marine Pollution Bulletin, 49(11), pp. 910-915. https://doi.org/10.1016/j.marpolbul.2004.06.014
  9. Ghrefat, H. and N. Yusuf(2006), Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan, Chemosphere, 65(11), pp. 2114-2121. https://doi.org/10.1016/j.chemosphere.2006.06.043
  10. Gottesfeld, P., F. H. Were, L. Adogame, S. Gharbi, D. San, M. M. Nota and G. Kuepouo(2018), soil contamination from lead battery manufacturing and recycling in seven African countries, Environmental research, 161, pp. 609-614. https://doi.org/10.1016/j.envres.2017.11.055
  11. Gough, L. P., R. C. Severson and L. L. Jackson(1994), Baseline element concentrations in soils and plants, bull Island, cape romain national wildlife refuge, South Carolina, USA, Water, Air, & Soil Pollution, 74(1), pp. 1-17. https://doi.org/10.1007/BF01257145
  12. Govil, P. K. and B. L. Narayana(1999), New Reference Material of Dunite Rock, NGRI UMR: Preparation and Evaluation. Geostandards and Geoanalytical Research, 23(1), pp. 77-85. https://doi.org/10.1111/j.1751-908X.1999.tb00561.x
  13. Jeon, S. K., M. J. Kwon, J. S. Yang and S. Lee(2017), Identifying the source of Zn in soils around a Zn smelter using Pb isotope ratios and mineralogical analysis. Science of The Total Environment, 601, pp. 66-72.
  14. Jiang, X., W. X. Lu, H. Q. Zhao, Q. C. Yang and Z. P. Yang(2014), Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences, 14(6), pp. 1599-1610. https://doi.org/10.5194/nhess-14-1599-2014
  15. Jolly, Y. N., A. Islam, S. B. Quraishi and A. I. Mustafa (2006), Evaluation of Paint Industry Effluents for Irrigation Purposes, Pakistan Journal of Scientific and Industrial Research, 49(2), p. 82.
  16. Krishna, A. K. and P. K. Govil(2007), Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India, Environmental monitoring and assessment, 124(1), pp. 263-275. https://doi.org/10.1007/s10661-006-9224-7
  17. Kulkarni, V. V., A. K. Golder and P. K. Ghosh(2018), Critical analysis and valorization potential of battery industry sludge: Speciation, risk assessment and metal recovery, Journal of Cleaner Production, 171, pp. 820-830. https://doi.org/10.1016/j.jclepro.2017.10.064
  18. Leung, H. M., N. S. Duzgoren-Aydin, C. K. Au, S. Krupanidhi, K. Y. Fung, K. C. Cheung, Y. K. Wong, X. L. Peng, Z. H. Ye, K. K. Yung and M. T. Tsui(2017), Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environmental Science and Pollution Research, 24(10), pp. 9079-9088. https://doi.org/10.1007/s11356-016-6756-4
  19. Li, C., M. Sun, C. Song, P. Tao, Y. Yin and M. Shao(2017), Assessment of Heavy Metal Contamination in the Sediments of the Shuangtaizi Estuary Using Multivariate Statistical Techniques, Soil and Sediment Contamination: An International Journal, 26(1), pp. 45-58. https://doi.org/10.1080/15320383.2017.1245710
  20. Liu, Q., Wang, F., Meng, F., Jiang, L., Li, G., & Zhou, R. (2018). Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index. Marine Pollution Bulletin, 126, 293-303. https://doi.org/10.1016/j.marpolbul.2017.11.017
  21. Muller, G. (1969), Index of geo-accumulation in sediments of the Rhine River, Geol J., 2, pp. 108-118.
  22. Pekey, H. (2006), Heavy metal pollution assessment in sediments of the Izmit Bay, Turkey. Environmental monitoring and Assessment, 123(1-3), pp. 219-231. https://doi.org/10.1007/s10661-006-9192-y
  23. Salomons, W. and U. Forstner(1984), Metals in the Hydrocycle, Spring Berlin, pp. 69-76.
  24. Sharma, R. K., M. Agrawal and F. Marshall(2006), Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India, Bulletin of environmental contamination and toxicology, 77(2), pp. 312-318. https://doi.org/10.1007/s00128-006-1065-0
  25. Sharma, R. K., M. Agrawal and F. Marshall(2007), Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India, Ecotoxicology and environmental safety, 66(2), pp. 258-266. https://doi.org/10.1016/j.ecoenv.2005.11.007
  26. Sutherland, R. A. (2000), Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii Environmental Geology 39:611-627 doi:10.1007/s002540050473.
  27. Taylor, S. R. and S. M. McLennan(1995), The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), pp. 241-265. https://doi.org/10.1029/95RG00262
  28. Teng, Y. G., X. G. Tuo and C. J. Zhang(2002), Applying geoaccumulation index to assess heavy metal pollution in sediment: influence of different geochemical background, Environmental Science and Technology, 2, pp. 7-9.
  29. Wang, Q. R., Y. S. Cui, X. M. Liu, Y. T. Dong and P. Christie(2003), Soil contamination and plant uptake of heavy metals at polluted sites in China, Journal of Environmental Science and Health, Part A, 38(5), pp. 823-838. https://doi.org/10.1081/ESE-120018594
  30. Yang, Y., Q. Jin, J. Fang, F. Liu, A. Li, P. Tandon and A. Shan(2017), Spatial distribution, ecological risk assessment, and potential sources of heavy metal (loid) s in surface sediments from the Huai River within the Bengbu section, China. Environmental Science and Pollution Research, 24(12), pp. 11360-11370. https://doi.org/10.1007/s11356-017-8732-z
  31. Yaqin, J. I., F. E. N. G. Yinchang, W. U. Jianhui, Z. H. U. Tan, B. A. I. Zhipeng an D. U. A. N.d Chiqing(2008), Using geoaccumulation index to study source profiles of soil dust in China, Journal of environmental sciences, 20(5), pp. 571-578. https://doi.org/10.1016/S1001-0742(08)62096-3