• 제목/요약/키워드: efficient shear deformation theory

검색결과 76건 처리시간 0.019초

Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory

  • Bouiadjra, Rabbab Bachir;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.547-567
    • /
    • 2013
  • Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four unknowns. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is employed here. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The non-linear strain-displacement relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical buckling temperature, which are useful for engineers in design. Numerical results are presented for the present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in comparison to other theories.

Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory

  • Guerroudj, Hicham Zakaria;Yeghnem, Redha;Kaci, Abdelhakim;Zaoui, Fatima Zohra;Benyoucef, Samir;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.121-132
    • /
    • 2018
  • This research investigates the free vibration analysis of advanced composite plates such as functionally graded plates (FGPs) resting on a two-parameter elastic foundations using a hybrid quasi-3D (trigonometric as well as polynomial) higher-order shear deformation theory (HSDT). This present theory, which does not require shear correction factor, accounts for shear deformation and thickness stretching effects by a sinusoidal and parabolic variation of all displacements across the thickness. Governing equations of motion for FGM plates are derived from Hamilton's principle. The closed form solutions are obtained by using Navier technique, and natural frequencies are found, for simply supported plates, by solving the results of eigenvalue problems. The accuracy of the present method is verified by comparing the obtained results with First-order shear deformation theory, and other predicted by quasi-3D higher-order shear deformation theories. It can be concluded that the proposed theory is efficient and simple in predicting the natural frequencies of functionally graded plates on elastic foundations.

An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper an efficient and simple refined shear deformation theory is presented for the free vibration of Functionally Graded Plates Under Various Boundary Conditions. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The mechanical properties of functionally graded material are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived using Hamilton's principle. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, and side-to-thickness ratio on the free vibration of FGM plates are presented.

Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제14권1호
    • /
    • pp.85-104
    • /
    • 2013
  • The present work deals with the thermomechanical bending response of functionally graded plates resting on Winkler-Pasternak elastic foundations. Theoretical formulations are based on a recently developed refined trigonometric shear deformation theory (RTSDT). The theory accounts for trigonometric distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined trigonometric shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modelled as two-parameter Pasternak foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermomechanical behavior of functionally graded plates. It can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical bending response of functionally graded plates.

Thermal buckling analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric shear deformation theory

  • Tebboune, Wafa;Benrahou, Kouider Halim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.443-465
    • /
    • 2015
  • In this paper, an efficient and simple trigonometric shear deformation theory is presented for thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and stability equations of plates made of functionally graded materials are derived. The boundary conditions for the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and thickness ratio on the critical buckling temperature of functionally graded plates are investigated and discussed.

Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory

  • Safa, Abdelkader;Hadji, Lazreg;Bourada, Mohamed;Zouatnia, Nafissa
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.329-336
    • /
    • 2019
  • An efficient shear deformation beam theory is developed for thermo-elastic vibration of FGM beams. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the on the surfaces of the beam without using shear correction factors. The material properties of the FGM beam are assumed to be temperature dependent, and change gradually in the thickness direction. Three cases of temperature distribution in the form of uniformity, linearity, and nonlinearity are considered through the beam thickness. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded beams are obtained using Navier solution. Numerical results are presented to investigate the effects of temperature distributions, material parameters, thermal moments and slenderness ratios on the natural frequencies. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

저속 충격시 고차이론을 이용한 복합 재료 판의 동적 특성 (Dynamic Characteristics of Composite Plates Based On a Higher Order Theory Under Low-Velocity Impact)

  • 심동진;김지환
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.132-138
    • /
    • 1998
  • The dynamic response of symmetric cross-ply and angle-ply composite laminated plates under impact loads is investigated using a higher order shear deformation theory. A modified Hertz law is used to predict the impact loads and a four node finite element is used to model the plate. By using a higer order shear deformation theory, the out-of-plane shear stresses, which can be a crucial factor in the failure of composite plates, are determined with significant accuracy. This is accomplished by using a stress recovery technique using the in-plane stresses. The results compared with previous investigations showed good agreement. It can be seen that this method of analyzing impact problems is more efficient than current three dimensional methods in terms of time and expense.

  • PDF

An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities

  • Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.255-265
    • /
    • 2017
  • In this paper, an efficient shear deformation theory is developed for wave propagation analysis in a functionally graded beam. More particularly, porosities that may occur in Functionally Graded Materials (FGMs) during their manufacture are considered. The proposed shear deformation theory is efficient method because it permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Material properties are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents; but the rule of mixture is modified to describe and approximate material properties of the functionally graded beams with porosity phases. The governing equations of the wave propagation in the functionally graded beam are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded beam is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions, the depth of beam, the number of wave and the porosity on wave propagation in functionally graded beam are discussed in details. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded beam.

An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions

  • Adim, Belkacem;Daouadji, Tahar Hassaine;Rabia, Benferhat;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제11권1호
    • /
    • pp.63-82
    • /
    • 2016
  • In this study, the bending and dynamic behaviors of laminated composite plates is examined by using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates under various boundary conditions. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton's principle. Numerical results for the bending and dynamic behaviors of antisymmetric cross-ply laminated plate under various boundary conditions are presented. The validity of the present solution is demonstrated by comparison with solutions available in the literature. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations

  • Abdelbari, Salima;Fekrar, Abdelkader;Heireche, Houari;Said, Hayat;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • 제22권3호
    • /
    • pp.329-348
    • /
    • 2016
  • This work presents a simple hyperbolic shear deformation theory for analysis of functionally graded plates resting on elastic foundation. The proposed model contains fewer number of unknowns and equations of motion than the first-order shear deformation model, but the transverse shear stresses account for a hyperbolic variation and respect the tangential stress-free boundary conditions on the plate boundary surface without introducing shear correction factors. Equations of motion are obtained from Hamilton's principle. The Navier-type analytical solutions for simply-supported plates are compared with the existing solutions to demonstrate the accuracy of the proposed theory.