• Title/Summary/Keyword: efficient irrigation

Search Result 115, Processing Time 0.033 seconds

Prediction of reservoir sedimentation: A case study of Pleikrong Reservoir

  • Thu Hien Nguyen;XuanKhanh Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.36-36
    • /
    • 2023
  • Sedimentation is a natural process that occurs in all reservoirs. Sedimentation problem reduces the storage capacity of the reservoir and limits its ability to provide water for various uses, such as irrigation, hydropower generation, and flood control. Therefore, predicting reservoir sedimentation is important for ensuring the efficient operation and sedimentation management of a reservoir and . In this study, the HECRAS model was applied to predict longitudinal distribution of deposited sediment in the Pleikrong reservoir to 2050. Different scenarios was considered: (i) no climate change, (ii) climate change (under two emissions scenarios, RCP4.5 and RCP8.5), and (iii) climate change and land use change (followed land use planning of the watershed). The computation results with different scenarios were analyses and compared. The results show that the reservoir reduced storage volume's rate and sedimentation proceed toward to the dam in the case of climate change is faster than in the case of no climate change. Analyses also indicates that following the land used planning could also improve the long-term problem of the reservoir sedimentation. The outcomes of this study will be helpful for a sustainable plan of sediment management for the Pleikrong reservoir.

  • PDF

Effects of the Brackish Water Desalination System on Soil Environment and Growth in Squash Greenhouse Cultivation Area (시설재배지에서 기수담수화시스템 적용에 따른 토양 환경 및 애호박의 생육 영향 분석)

  • Kim, Soo-Jin;Bae, Seung-jong;Jeong, Han-Suk;Kim, Hak-Kwan;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.113-121
    • /
    • 2018
  • The objectives of the research were 1) to develop the low-cost and high efficient desalination system to treat brackish water having high salt contents for irrigation at greenhouses near coast, and 2) to monitor and assess the effects of the brackish water desalination system on soil environment and growth in squash greenhouse cultivation area. The monitoring site was one of the squash greenhouse cultivation farm at Choengam-ri, Jinsang-myun, Gwangyang-si, Jeonnam-Do Monitoring results for groundwater irrigation water quality, and salinity showed a remarkable difference between control and treatment group. The salinity of soil at treatment group was less than at control group. While, the system made possible to increase the squash quantity from 4.7 ea to 6.3 ea at each and the average weight of the harvested squash was increased from 277.2 g to 295.1 g. The applied brackish water desalination system may be appled to reclaim sea or brackish irrigated area as alternative water resources, although long-term monitoring is needed to get more representative results at different level of salinity.

A successful province of agriculturalwater-saving: Gansu

  • Bin, Jiang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.194-194
    • /
    • 2016
  • Gansu, located in the northwestern region, is a typical agricultural province of arid, semiarid in China. The shortage of water resources is the biggest obstacle of Gansu Province's development, and the dry farming water-saving is the eternal theme of Gansu agricultural sustainable development. In recent years, intensify reform in Gansu, has walked out a successful way in the agricultural water-saving. Using the integrated river basin governance as opportunity, the total water-using quantity was regarded as rigidity to retrain, distributed to counties (districts), irrigated areas, towns, associations, groups step by step. Agricultural water price was substantially increased, with the surface water price from about $0.1RMB/m^3$ to more than $0.2 RMB/m^3$, and the ground water from zero to more than $0.1RMB/m^3$. Simultaneously, the difference water prices and over-quota water progression price markup were carried out. The transaction of water rights was encouraged to impel the peasant to establish the consciousness of saving-water. The regulatory documents were formulated to standardize the scope, condition, mode, program etc. of agriculture water-rights transaction, to guarantees the transaction of water rights is carries out in order. The pattern of farming was optimized and adjusted, reducing the high water-consumption crop, increasing economic crops with high benefit and low water-consumption, developing industrialized agricultures such as green house. The relative engineering and measuring facility were comprehensively improved, with the anti-seepage of canal system and the enforcement of dynamo-electric well, developing high-efficient water-saving irrigation and overall metering facilities. The water fine-grained management has realized, and obvious water-saving effect has obtained: water-using rate in the irrigation area by river water has brought up to 0.57 from 0.52, and by well water up to 0.84 from 0.76. Although the water price has increased, the proportion that the water rate expenditure accounted for the cost lasts decline, and the farmers' income has gone up. The peasants express, the used water is few, and it is few to till land, but the income is many, and life is better.

  • PDF

Estimation of Agricultural Reservoir Water Storage Based on Empirical Method (저수지 관리 관행을 반영한 농업용 저수지 저수율 추정)

  • Kang, Hansol;An, Hyunuk;Nam, Wonho;Lee, Kwangya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.1-10
    • /
    • 2019
  • Due to the climate change the drought had been occurring more frequently in recent two decades as compared to the previous years. The change in the pattern and frequency of the rainfall have a direct effect on the farming sector; therefore, the quantitative estimation of water supply is necessary for efficient agricultural water reservoir management. In past researches, there had been several studies conducted in estimation and evaluation of water supply based on the irrigational water requirement. However, some researches had shown significant differences between the theoretical and observed data based on this requirement. Thus, this study aims to propose an approach in estimating reservoir rate based on empirical method that utilized observed reservoir rate data. The result of these two methods in comparison with the previous one is seen to be more fitted for both R2 and RMSE with the observed reservoir rate. Among these procedures, the method that considers the drought year data shows more fitted outcomes. In addition, this new method was verified using 15-year (2002 to 2006) linear regression equation and then compare the preceeding 3-year (1999 to 2001) data to the theoretical method. The result using linear regression equation is also perceived to be more closely fitted to the observed reservoir rate data than the one based on theoretical irrigation water requirement. The new method developed in this research can therefore be used to provide more suitable supply data, and can contribute to effectively managing the reservoir operation in the country.

Groundwater use management using existing wells to cope with drought

  • Amos, Agossou;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.450-450
    • /
    • 2022
  • The study aims to develop scenarios for efficient groundwater use using existing wells in order to prepare for an eventual drought. In the recent decades, droughts are not only intensifying, but they are also spreading into territories where droughts used to be less intense and relatively infrequent. With the increasing disaster, efficient groundwater use is urgently needed not only to prevent the problem of groundwater depletion but also drought risk reduction. Thus, the research addressed the problem of efficient aquifer use as source of water during drought and emergencies. The research focused on well network system applied to Yanggok-ri in Korea using simulation models in visual MODFLOW. The approach consists to variate groundwater pumping rate in the most important wells used for irrigation across the study area and evaluate the pumping effect on water level fluctuation. From the evaluation, the pumping period, appropriate pumping rate of each well and the most vulnerable wells are determined for a better groundwater management. The project results divide the study area into two different regions (A and B), where the wells in the region A (western part of the region) show a crucial drop in water level from May to early July and in august as consequence of water pumping. While wells in region B are also showing a drawdown in groundwater level but relatively less compare to region A. The project suggests a scenarios of wells which should operate considering water demand, groundwater level depletion and daily pumping rate. Well Network System in relevant project, by pumping in another well where water is more abundant and keep the fixed storage in region A, is a measure to improve preparedness to reduce eventual disaster. The improving preparedness measure from the project, indicates its implication to better groundwater management.

  • PDF

Analysis of the Optimal Window Size of Hampel Filter for Calibration of Real-time Water Level in Agricultural Reservoirs (농업용저수지의 실시간 수위 보정을 위한 Hampel Filter의 최적 Window Size 분석)

  • Joo, Dong-Hyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-Hoon;Kwon, Jae-Hwan;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.9-24
    • /
    • 2022
  • Currently, a vast amount of hydrologic data is accumulated in real-time through automatic water level measuring instruments in agricultural reservoirs. At the same time, false and missing data points are also increasing. The applicability and reliability of quality control of hydrological data must be secured for efficient agricultural water management through calculation of water supply and disaster management. Considering the characteristics of irregularities in hydrological data caused by irrigation water usage and rainfall pattern, the Korea Rural Community Corporation is currently applying the Hampel filter as a water level data quality management method. This method uses window size as a key parameter, and if window size is large, distortion of data may occur and if window size is small, many outliers are not removed which reduces the reliability of the corrected data. Thus, selection of the optimal window size for individual reservoir is required. To ensure reliability, we compared and analyzed the RMSE (Root Mean Square Error) and NSE (Nash-Sutcliffe model efficiency coefficient) of the corrected data and the daily water level of the RIMS (Rural Infrastructure Management System) data, and the automatic outlier detection standards used by the Ministry of Environment. To select the optimal window size, we used the classification performance evaluation index of the error matrix and the rainfall data of the irrigation period, showing the optimal values at 3 h. The efficient reservoir automatic calibration technique can reduce manpower and time required for manual calibration, and is expected to improve the reliability of water level data and the value of water resources.

Comparison of Soil Moisture Changes Based on the Installation Position of Soil Moisture Sensors in the Korean Orchard Field Soils (노지 과수원에서 토양수분센서 설치 위치에 따른 토양수분 변화 비교)

  • Jong Kyun Kim;Hyunseok Kim;Kyeong-Jin Kang;Jongyun Kim
    • Journal of Bio-Environment Control
    • /
    • v.33 no.2
    • /
    • pp.107-113
    • /
    • 2024
  • For efficient soil water management in open fields, the proper use of soil moisture sensors is a prerequisite. Particularly in open-field environments like orchards with extensive root systems, the appropriate positioning of sensors is very important. The present study was conducted to identify the optimal placement of soil moisture sensors by assessing changes in soil water potential across various positions within orchard field soils after installing tensiometers. In apple and Asian pear orchards located in two regions of Korea, nine soil water potential sensors (TEROS 21, METER Group) were installed at distances of 20, 40, and 60 cm from the tree trunk and depths of 10, 20, and 30 cm from the soil surface, and monitored the soil water potential changes over two years. Results indicated that the positions closer to the tree trunk and the soil surface exhibited more pronounced changes in soil water potential. The greatest magnitude of change in soil water potential was observed at a distance of 20 cm and a depth of 10 cm, suggesting this position as the most suitable for soil moisture sensor installation. However, variations in the degree and pattern of changes in soil water potential were noted across sensor positions due to root system growth over time. Therefore, periodic observation and adjustments in sensor placement would be advisable to accurately monitor the soil moisture condition in long-term crops such as fruit trees in open fields.

Comparison of Wetting and Drying Characteristics in Differently Textured Soils under Drip Irrigation (점적관개 시 토성별 습윤.건조 특성 비교)

  • Kim, Hak-Jin;Son, Dong-Wook;Hur, Seung-Oh;Roh, Mi-Young;Jung, Ki-Yuol;Park, Jong-Min;Rhee, Joong-Yong;Lee, Dong-Hoon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Maintenance of adequate soil water content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement for precision irrigation would allow efficient supply of water to crops, thereby resulting in minimization of water drainage and contamination of ground water. This research reports on the characterization of spatial and temporal variations in water contents through three different textured soils, such as loam, sandy loam, and loamy sand, when water is applied on the soil surface using an one-line drip irrigation system and the soils are dried after the irrigation stops, respectively. Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30cm depths. Spatial variability in water content for each soil type was strongly influenced by soil textural class. There were big differences in wetting pattern and the rate of downward movement between loam and sandy loam soils, showing that the loam soil had a wider wetting pattern and a slower rate of downward movement than did the sandy loam soil. The wetting pattern in loamy sand soil was not apparent due to a low variability in water content (< 10%) by a lower-water holding capacity as compared to those measured in the loam and sandy loam soils, implying that the rate of water drainage below a depth of 30cm was high. When soils were dried, there were highly exponential relationships between water content and time elapsed after irrigation stops ($r^2$${\geq}$0.98). It was estimated that equilibrium moisture contents for loam, sandy loam, and loamy sand soils would be 17.6%, 6.2%, and 4.2%, respectively.

Measuring Water Content Characteristics by Using Frequency Domain Reflectometry Sensor in Coconut Coir Substrate (FDR(Frequency Domain Reflectometry)센서를 이용한 코코넛 코이어 배지내 수분특성 측정)

  • Park, Sung Tae;Jung, Geum Hyang;Yoo, Hyung Joo;Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • This experiment has investigated suitable methods to improve precision water content monitoring of coconut coir substrates to control irrigation by frequency domain reflectometry(FDR) sensors. Specifically, water content changes and variations were observed at different sensing distances and positions from the irrigation dripper location, and different spaces between the FDR sensors with or without noise filters. Commercial coconut coir substrates containing different ratios of dust and chips(10:0, 7:3, 5:5, 3:7) were used. On the upper side and the side of the substrates, a FDR sensor was used at 5, 10, 20, 30cm distances respectively from the irrigation dripper point, and water content was measured by time after the irrigation. In the glass beads, sensors were installed with or without noise filtering. Closer sensing distance had a higher water content increasing rate, regardless of different coir substrate ratios. There were no differencies of water content increasing rates in 10:0 and 3:7 substrates between the upper side and the side. Whereas, 7:3 and 5:5 substrates showed higher increasing rates on the upper side measurements. Substrates with higher ratios of chip(3:7) had lower increasing rates than others. And, with noise filters, the exatitude of measurement was improved because the variation and deviation were reduced. Therefore, in coconut coir with FDR sensors, an efficient water content measurment to control irrigations can be achieved by installing sensors closer to an irrigation point and upper side of substrates with noise filters.

Studies on the Effect of the Thickness of Lining on Water Holding Capacity and Lield in Rice Patty with High Permeability (누수유에 있어서 밑다짐 두께의 차이가 보수력 및 수호량에 미치는 영향)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1598-1603
    • /
    • 1969
  • A field expeperiment has been conducted in order to explore possibilities of efficient and economical irrigation methods for the rice cultivation through which irrigation water may be saved and rice paddies may keep water for longer period of time, resulting in an increased yield of rice. Some of the major findings from the experimentation are summarized in the following. 1. There is slightly significant difference among experimental plots in the weight of rice straw. 2. The 9cm-lined plot proves to be the best in terms of the thickness. In this connection, however, it seems to by 3cm. 3. The wheat straw-lined plot is found superior in yield. However, this may be resulted in by the application of more fertilizer, and how long the plot could be durable may be problematic. Since every two or three years the straw-lining work has to be done, more labour may be required of the plot. 4. It would be inappropriate to expect any meaningful experimental results for the first year, since surface soil and deep soil are mixed up in the course of work. There is not observed any meaningful difference in the number of ears per stalk and in the number of grains per ear. However, in the lined plots, the number of tillers is slightly increased. 5. Irrigation has been applied by means of ordinary method after lining. When irrigation is applied at the interval of five to six days, irrigation water is saved by 44.9 per cent in the case of 9cm-lined plot, 39.7 per cent in the case of 6 cm-lined plot, and 36.3 percent in the case of 3 cm-lined plot. 6. An increased yields arenoted in the wheat straw-lined plot by 23.8 per cent, in the 9 cm-lined plot by 20.1 per cent, in the 3 cm-lined plot by 12 per cent. and in the case of vinyl-lined plot by 12.5 per cent. 7. The rate of maturity of grains is proved better, and the husking rate also found better(75%), that is, the quality of rice grains is improved.

  • PDF