DOI QR코드

DOI QR Code

Comparison of Soil Moisture Changes Based on the Installation Position of Soil Moisture Sensors in the Korean Orchard Field Soils

노지 과수원에서 토양수분센서 설치 위치에 따른 토양수분 변화 비교

  • Jong Kyun Kim (Department of Plant Biotechnology, Korea University) ;
  • Hyunseok Kim (Peach Research Institute of Gyeongsangbukdo Agricultural Research and Extension Services) ;
  • Kyeong-Jin Kang (Chungnam Agricultural Research and Extension Services) ;
  • Jongyun Kim (Department of Plant Biotechnology, Korea University)
  • 김종균 (고려대학교 식물생명공학과) ;
  • 김현석 (경상북도농업기술원 청도복숭아연구소) ;
  • 강경진 (충청남도농업기술원 스마트원예연구과) ;
  • 김종윤 (고려대학교 식물생명공학과)
  • Received : 2024.04.01
  • Accepted : 2024.04.27
  • Published : 2024.04.30

Abstract

For efficient soil water management in open fields, the proper use of soil moisture sensors is a prerequisite. Particularly in open-field environments like orchards with extensive root systems, the appropriate positioning of sensors is very important. The present study was conducted to identify the optimal placement of soil moisture sensors by assessing changes in soil water potential across various positions within orchard field soils after installing tensiometers. In apple and Asian pear orchards located in two regions of Korea, nine soil water potential sensors (TEROS 21, METER Group) were installed at distances of 20, 40, and 60 cm from the tree trunk and depths of 10, 20, and 30 cm from the soil surface, and monitored the soil water potential changes over two years. Results indicated that the positions closer to the tree trunk and the soil surface exhibited more pronounced changes in soil water potential. The greatest magnitude of change in soil water potential was observed at a distance of 20 cm and a depth of 10 cm, suggesting this position as the most suitable for soil moisture sensor installation. However, variations in the degree and pattern of changes in soil water potential were noted across sensor positions due to root system growth over time. Therefore, periodic observation and adjustments in sensor placement would be advisable to accurately monitor the soil moisture condition in long-term crops such as fruit trees in open fields.

노지 토양의 효율적인 수분관리를 위해서는 토양수분센서를 알맞게 사용하여야 하며, 특히 노지 과수와 같이 넓은 뿌리환경을 가지는 토양 환경에서는 적합한 센서 설치 위치가 매우 중요하다. 이에 본 실험에서는 노지 과수원에서 다양한 거리와 깊이에 토양수분장력 센서를 설치하여 각 위치의 토양수분장력 값을 측정하고, 센서 설치 위치에 따른 토양수분 변화 정도를 비교하여, 이에 따른 최적 토양수분센서 설치 위치를 알아보기 위해 수행하였다. 국내 두 지역에 위치한 사과 및 배 과수원에서 각 과수의 수간으로부터 거리 20, 40, 60cm, 토양표면으로부터 깊이 10, 20, 30cm로 각각 9개의 토양수분장력센서(TEROS 21, METER Group)를 설치하여 2년간의 토양수분장력 변화 정도를 비교 분석하였다. 두 과수원 모두 센서가 과수의 수간으로부터 가까울수록, 토양의 표면으로부터 얕게 설치되어 있을수록 토양수분장력 값의 변화 정도가 크게 나타났으며, 20cm × 10cm(과수의 수간으로부터 거리 × 토양표면으로부터 깊이) 지점에서의 토양수분장력 값의 변화 정도가 가장 큰 것으로 나타나 토양수분센서 설치에 가장 적합한 지점으로 판단되었다. 그러나 연도가 달라짐에 따라 과수의 뿌리가 생장하며 센서 설치 위치에 따른 토양수분장력의 변화 정도 양상이 조금씩 변하는 것을 확인할 수 있었다. 노지과수와 같이 장기간 재배하는 작물의 토양수분 환경을 알맞게 측정하기 위해서는 현장에서의 주기적인 토양수분 변화 관찰 및 보완을 통해 센서 설치 위치를 변경하는 노력도 필요할 것으로 나타났다.

Keywords

References

  1. Amiri Z., M. Gheysari, M.R. Mosaddeghi, S. Amiri, and M.S. Tabatabaei 2022, An attempt to find a suitable place for soil moisture sensor in a drip irrigation system. Inf Process Agric 9(2):254-265. doi:10.1016/j.inpa.2021.04.010 
  2. Breda N., A. Granier, F. Barataud, and C. Moyne 1995, Soil water dynamics in an oak stand: I. Soil moisture, water potentials and water uptake by roots. Plant Soil 172:17-27. doi:10.1007/BF00020856 
  3. Coelho E.F., and D. Or 1996, Flow and uptake patterns affecting soil water sensor placement for drip irrigation management. Trans ASAE 39(6):2007-2016. doi:10.13031/2013.27703 
  4. Dominguez-Nino J.M., J. Oliver-Manera, G. Arbat, J. Girona, and J. Casadesus 2020, Analysis of the variability in soil moisture measurements by capacitance sensors in a drip-irrigated orchard. Sensors 20(18):5100. doi:10.3390/s20185100 
  5. Evett S.R., J.A. Tolk, and T.A. Howell 2006, Soil profile water content determination: Sensor accuracy, axial response, calibration, temperature dependence, and precision. Vadose Zone J 5(3):894-907. doi:10.2136/vzj2005.0149 
  6. Garg A., P. Munoth, and R. Goyal 2016, Application of soil moisture sensor in agriculture. Proc Int Conf Hydraul 8-10.
  7. Hoppula K.I., and T.J. Salo 2007, Tensiometer-based irrigation scheduling in perennial strawberry cultivation. Irrig Sci 25:401-409. doi:10.1007/s00271-006-0055-7 
  8. Jiang X., and L. He 2021, Investigation of effective irrigation strategies for high-density apple orchards in Pennsylvania. Agronomy 11(4):732. doi:10.3390/agronomy11040732 
  9. Jiao M., W. Yang, W. Hu, B. Clothier, S. Zou, D. Li, N. Di, J. Liu, Y. Liu, J. Duan, and B. Xi 2021, The optimal tensiometer installation position for scheduling border irrigation in Populus tomentosa plantations. Agric Water Manag 253:106922. doi:10.1016/j.agwat.2021.106922 
  10. Jones H.G. 2004, Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55(407):2427-2436. doi:10.1093/jxb/erh213 
  11. Kang S., M.W. van Iersel, and J. Kim 2019, Plant root growth affects FDR soil moisture sensor calibration. Sci Hortic 252:208-211. doi:10.1016/j.scienta.2019.03.050 
  12. Kim H.N., and J.H. Park 2021, Research trends using soil sensors for precise nutrient and water management in soil for smart farm. Korean J Soil Sci Fertil 54(3):366-382. (in Korean) doi:10.7745/KJSSF.2021.54.3.366 
  13. Kim H.J., D.W. Son, S.O. Hur, M.Y. Roh, K.Y. Jung, J.M. Park, J.Y. Rhee, and D.H. Lee 2009, Comparison of wetting and drying characteristics in differently textured soils under drip irrigation. J Bio-Environ Control 18(4):309-315. (in Korean) 
  14. Kim W.I., 2019, Setting soil moisture tension for automated irrigation in apple orchard, Rural Development Administration Korea. (in Korean) Available via https://www.nongsaro.go.kr/portal/ps/psb/psbb/farmUseTechDtl.ps?menuId=PS00072&farmPrcuseSeqNo=100000156897&totalSearchYn=Y Accessed 24 April 2024 
  15. Lee K., J. Kim, J. Lee, and J. Kim 2022, Comparisons of soil water retention characteristics and FDR sensor calibration of field soils in Korean orchards. J Bio-Environ Control 31(4):401-408. (in Korean) doi:10.12791/KSBEC.2022.31.4.401 
  16. Mittelbach H., I. Lehner, and S.I. Seneviratne 2012, Comparison of four soil moisture sensor types under field conditions in Switzerland. J Hydrol 430:39-49. doi:10.1016/j.jhydrol.2012.01.041 
  17. Muller T., C.R. Bouleau, and P. Perona 2016, Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds. Agric Water Manag 177:54-65. doi:10.1016/j.agwat.2016.06.019 
  18. Nadezhdina N., M.I. Ferreira, R. Silva, and C.A. Pacheco 2008, Seasonal variation of water uptake of a Quercus suber tree in Central Portugal. Plant Soil 305:105-119. doi:10.1007/s11104-007-9398-y 
  19. Nam S., S. Kang, and J. Kim 2020, Maintaining a constant soil moisture level can enhance the growth and phenolic content of sweet basil better than fluctuating irrigation. Agric Water Manag 238:106203. doi:10.1016/j.agwat.2020.106203 
  20. Predieri S., R. Dris, L. Sekse, and F. Rapparini 2003, Influence of environmental factors and orchard management on yield and quality of sweet cherry. J Food Agric Environ 1(2):263-266. 
  21. Soulis K.X., and S. Elmaloglou 2016, Optimum soil water content sensors placement in drip irrigation scheduling systems: Concept of time stable representative positions. J Irrig Drain Eng 142(11):04016054. doi:10.1061/(ASCE)IR.1943-4774.0001093 
  22. Soulis K.X., and S. Elmaloglou 2018, Optimum soil water content sensors placement for surface drip irrigation scheduling in layered soils. Comput Electron Agric 152:1-8. doi:10.1016/j.compag.2018.06.052 
  23. Spaans E.J., and J.M. Baker 1996, The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic. Soil Sci Soc Am J 60(1):13-19. doi:10.2136/sssaj1996.03615995006000010005x 
  24. SU S.L., D.N. Singh, and M.S. Baghini 2014, A critical review of soil moisture measurement. Measurement 54:92-105. doi:10.1016/j.measurement.2014.04.007 
  25. Thompson R.B., M. Gallardo, L.C. Valdez, and M.D. Fernandez 2007, Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. Agric Water Manag 88(1-3):147-158. doi:10.1016/j.agwat.2006.10.007 
  26. Walter A., R. Finger, R. Huber, and N. Buchmann 2017, Smart farming is key to developing sustainable agriculture. Proc Natl Acad Sci 114(24):6148-6150. doi:10.1073/pnas.1707462114 
  27. Yu L., W. Gao, R.R. Shamshiri, S. Tao, Y. Ren, Y. Zhang, and G. Su 2021, Review of research progress on soil moisture sensor technology. Int J Agric Biol Eng 14(4):32-42. doi:10.34657/10037 
  28. Zinkernagel J., J.F. Maestre-Valero, S.Y. Seresti, and D.S. Intrigliolo 2020, New technologies and practical approaches to improve irrigation management of open field vegetable crops. Agric Water Manag 242:106404. doi:10.1016/j.agwat.2020.106404