• 제목/요약/키워드: effects of surface temperature

검색결과 2,259건 처리시간 0.028초

AISI 316L stainless steel에 저온 플라즈마 침탄처리 후 질화처리 시 처리시간과 온도가 표면특성에 미치는 영향 (Effects of Processing Time and Temperature on the Surface Properties of AISI 316L Stainless steel During Low Temperature Plasma Nitriding After Low Temperature Plasma Carburizing)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.357-362
    • /
    • 2008
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The effects of processing time and temperature on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ was increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness reached up to $1,200HV_{0.1}$ which is about 5 times higher than that of untreated sample ($250HV_{0.1}$). The thickness of ${\gamma}_N$ and concentration of N on the surface were increased with increasing processing time and temperature. The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was enhanced more than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

알루미늄 프라이팬에 부착된 스텐리스판의 패턴이 열 변형 및 표면온도에 미치는 영향 (Effects of Stainless Steel Plate-Patterns on the Thermal Distortion and Surface Temperature of Aluminum Frypan)

  • 문성모;윤명식
    • 한국표면공학회지
    • /
    • 제53권5호
    • /
    • pp.227-231
    • /
    • 2020
  • This article investigated the effects of stainless steel plate-patterns bonded to aluminum frypan on the thermal distortion and surface temperature of the frypan during gas or induction heating. Two different stainless steel plate-patterns were employed: type A contains only circular holes and type B has not only circular holes but also vacant spaces of 0.5 mm thick and 40 mm long straight line crossing 60 mm long curved line. The bottom of the frypan was distorted during heating when type A stainless steel plate-bonded frypan while no significant thermal distortion was observed for type B stainless steel plate-bonded frypan during heating. Temperature of the frypan surface showed the same trend during gas heating, irrespective of stainless steel plate-patterns. During induction heating, however, the frypan with type B stainless steel plate-pattern showed lower surface temperature than the frypan with type A stainless steel plate-pattern. It is concluded that Type B stainless steel plate-pattern with circular holes and vacant spaces of lines is very effective for minimizing a thermal distortion and lowering the surface temperature of an aluminum frypan during induction heating.

도시녹지의 기온 및 지온 완화효과에 관한 연구 (A Study on the Effect of Air Temperature and Ground Temperature Mitigation from Several Arrangements of Urban Green)

  • 이은엽;문석기;심상렬
    • 한국조경학회지
    • /
    • 제24권1호
    • /
    • pp.65-78
    • /
    • 1996
  • To study the temperature mitigation effects from urban green, several arrangements of green spaces were selected and air/ground temperatures were measured in Chongju city area. The results of this study can be summarized as follows; 1. It was found that the natural ground materials effect more affirmatively on the air and ground temperature than artificial ones do. The best results were recorded from the grass surface presenting highest mitigation effect and lowest daily temperature deviation. 2. Temperature mitigation effects of Tree-Shade on ground are different from season, ground material, and crown-size. Them most effects were found in interlocking block, the least in grass surface among recorded 2 seasons and 3 materials. In case of air temperature, the effects were more or less decreased in most cases. 3. From the survey, it was confirmed that the smaller urban greens can do its role of temperature mitigation as larger ones does. In case of this study, the effect was recorded about 2.3$^{\circ}C$.

  • PDF

MOLECULAR SCALE MECHANISM ON EVAPORATION AND REMOVAL PROCESS OF ADHERENT MOLECULES ON SURFACE BY BURNT GAS

  • Yang, Y.J.;Lee, C.W.;Kadosaka, O.;Shibahara, M.;Katsuki, M.;Kim, S.P.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.121-128
    • /
    • 2006
  • The interaction between adherent molecules and gas molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand evaporation and removal processes of adherent molecules on metallic surface using high temperature gas flow. Methanol molecules were chosen as adherent molecules to investigate effects of adhesion quantity and gas molecular collisions because the industrial oil has too complex structures of fatty acid. Effects of adherent quantity, gas temperature, surface temperature and adhesion strength for the evaporation rate of adherent molecules and the molecular removal mechanism were investigated and discussed in the present study. Evaporation and removal rates of adherent molecules from metallic surface calculated by the molecular dynamics method showed the similar dependence on the surface temperature shown in the experimental results.

위성영상을 통한 서울시 지표온도 분석 (The Land Surface Temperature Analysis of Seoul city using Satellite Image)

  • 정종철
    • 환경영향평가
    • /
    • 제22권1호
    • /
    • pp.19-26
    • /
    • 2013
  • The propose of this study is to analyze the optimum spatial resolution of the urban spatial thermal environment structure and to evaluate of the possibility detection using aerial photographs and thermal satellite images. The proper techniques of the optimum spatial resolution for the urban spatial thermal environment structure were analyzed. Thermal infrared satellite image of Seoul city were used for the change rate of surface temperature variation and suggested to the spatial extent and effects of urban surface characteristics and spatial data was interpreted as regions. To extract the surface temperature, Landsat thermal infrared satellite image compared with an automatic weather station data and in the field of the measured temperature and surface temperature by thermal environment affects, the spatial domain has been verified. The surface temperature of the satellite images to extract after adjusting surface temperature isotherms were constructed. The changes in surface temperature from 2008 to 2012 the average surface temperature observation images of changing areas were divided into space. The results of this study are as follows: Through analysis of satellite imagery, Seoul city surface temperature change due to extraction comfort indices were classified into four grades. The comfort index indicative of the temperature of Gangnam-gu, $23.7{\sim}27.2(^{\circ}C)$ range and Songpagu, a $22.7{\sim}30.6(^{\circ}C)$ respectively, the surface temperature of Yeouido $25.8{\sim}32.6(^{\circ}C)$ were in the range.

표면효과를 고려한 나노 사이즈 구조물의 local QC 열탄성 해석 (Thermomechanical Local QC Analysis of Nanoscale Structure Considering Surface Effect)

  • 유수영;이승윤;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.415-420
    • /
    • 2007
  • In analyzing the nano-scale behavior of nano devices or materials, QC method is efficient because it does not treat all the atoms. But for more accurate analysis in QC method, it is important to consider temperature and surface effects. In finite temperature, free energy is considered instead of potential energy. Because the surface area to volume ratio increases as the length scale of a body decreases, the surface effects are more dominant. In this paper, temperature related Cauchy-Born rule and surface Cauchy-Born rule are proposed to configurate the strain energy density. This method is applied to small and homogeneous deformation in two dimensional problem using finite element simulation.

  • PDF

Investigation of sea skin surface effects and sea surface emissivity effects based on thermal infrared camera image

  • Tamba, Sumio;Yoshimori, Kyu;Inomata, Kazuya
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.657-662
    • /
    • 2002
  • Sea surface temperatures (SSTs) estimated from satellite data are affected by various kinds of disturbance factors. In order to accurately estimate SSTs based on radiometric data observed by satellite, it is important to correct the effects by these disturbance factors. We obtained a huge data set of skin sea surface temperature images observed by a thermal infrared camera (TIC) in MUBEX Campaign. TIC installed on an observation vessel recorded sea surface skin temperature distribution under various weather conditions. Based on some special images observed by TIC, we estimated skin effects and effective sea surface emissivity. In this paper, we report the methods and results of these estimations.

  • PDF

도료의 부착성 개선을 위한 분자동역학적 연구 (Molecular Dynamics Study for Improving the Adhesion of Paint)

  • 양영준;이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.932-938
    • /
    • 2007
  • The interaction between adherent molecules and gas molecules was modeled in molecular scale and simulated by the molecular dynamics method in order to understand the evaporation and removal processes of adherent molecules on metallic surface using high temperature gas flow. Methanol molecules were chosen as adherent molecules to investigate effects of adhesion quantify and gas molecular collisions because the industrial oil has too complex structures of fatty acid. The effects of adherent quantify, gas temperature and surface temperature for the evaporation rate of adherent molecules and the molecular removal mechanism were investigated and discussed in the present study. Evaporation and removal rates of adherent molecules from metallic surface calculated by the molecular dynamics method showed the similar dependence on surface temperature shown in the experimental results.

윤활 마찰면의 스코링 저항성에 관한 연구 (A Study on Scoring Resistance In Lubricated Sliding Contact)

  • 김해원;홍재학;허준영
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.358-366
    • /
    • 1990
  • As a basic study to clarify the scoring resistance in lubricated sliding contact, the temperature rise on frictional surface was analyzed by theoretical method and the effects of various factors on the temperature rise were examined. On the basic of the results obtained theoretically, the practical equations to calculate the maximum average temperature of the contact surface were proposed which are applicable to sliding contact. Then, the effects of sliding velocity and oil temperature on the seizure behavior, and the relation between seizure and temperature rise were investigated. The following conclusions are deduced : The maximum average temperature rise and the other bulk temperature. The former is affected by the size of heat supply region and the sliding velocity, the latter is affected by heat transfer coefficient. Without regard to the operating condition such as sliding velocity, oil temperature and operating time at each load-step, the maximum average temperature just before seizure is nearly constant except in the region of lower velocity. Consequently, the maximum average temperature of the contact surface in boundary lubrication is a useful criterion to predict the scoring of sliding contact.

투.보수성 시멘트 콘크리트 포장의 열물성 및 수분보유특성이 표면온도에 미치는 영향 (Effects of Thermal Properties and Water Retention Characteristics of Permeable Concrete Pavement on Surface Temperature)

  • 류남형;유병림
    • 한국조경학회지
    • /
    • 제34권1호
    • /
    • pp.21-36
    • /
    • 2006
  • This study was undertaken to analyze the effects of pavement thermal properties and water retention characteristics on the surface temperature of the gray permeable cement concrete pavement during the summer. Following is a summary of major results. 1) The hourly surface temperature of pavement could be well predicted with a heat transfer model program that incorporated the input data of major meteorological variables including solar radiation, atmospheric temperature, dew point, wind velocity, cloudiness and the evaporation rate of the pavements predicted by the time domain reflectometry (TDR) method. 2) When the albedo was changed to 0.5 from an arbitrary starting condition of 0.3, holding other variables constant, the peak surface temperature of the pavement dropped by 11.5%. When heat capacity was changed to $2.5\;kJm^{-3}K^{-1}\;from\;1.5\;kJm^{-3}K^{-1}$, surface temperature dropped by 8.0%. When daily evaporation was changed to 1 mm from 2 mm, temperature dropped by 5.7%. When heat conductivity was changed to $2.5\;Wm^{-1}K^{-1}\;from\;1.5\;Wm^{-1}K^{-1}$, the peak surface temperature of the pavement fell by 1.2%. The peak pavement surface temperature under the arbitrary basic condition was $24.46^{\circ}C$ (12 a.m.). 3) It accordingly became evident that the pavement surface temperature can be most effectively lowered by using materials with a high albedo, a high heat capacity or a high evaporation at the pavement surface. The glare situation, however, is intensified by raising of the albedo, moreover if reflected light is absorbed into surrounding physical masses, it is changed into heat. It accordingly became evident that raising the heat capacity and the evaporative capacity may be the moot acceptable measures to improve the thermal characteristics of the pavement. 4) The sensitivity of the surface temperature to major meteorological variables was as follows. When the daily average temperature changed to $0^{\circ}C\;from\;15^{\circ}C$, holding all other variables constant, the peak surface temperature of the pavement decreased by 56.1 %. When the global solar radiation changed to $200\;Wm^{-2}\;from\;600\;Wm^{-2}$, the temperature of the pavement decreased by 23.4%. When the wind velocity changed to $8\;ms^{-1}\;from\;4\;ms^{-1}$, the temperature decreased by 1.4%. When the cloudiness level changed to 1.0 from 0.5, the peak surface temperature decreased by 0.7%. The peak pavement surface temperature under the arbitrary basic conditions was $24.46^{\circ}C$ (12 a.m.)