• Title/Summary/Keyword: effectors

Search Result 163, Processing Time 0.032 seconds

Anti-tumorigenic Effects of Angelica gigase Nakai Extract on MBA-MB-231 through Regulating Lats1/2 Activation (유방암세포에서 LATS1/2 활성에 의한 당귀 추출물의 항암효과)

  • Kim, Cho-Long;Kim, Nambin;Jeong, Han-Sol;Shin, Yu-Su;Mo, Jung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.177-183
    • /
    • 2020
  • The Hippo-YAP signaling pathway is critical for cell proliferation, survival, and self-renewal in both Drosophila and mammals. Disorder of Hippo-YAP pathway leads to tumor development, progression and poor prognosis in various cancers. YAP/TAZ are the key downstream effectors of the Hippo pathway and they can be inhibited through LATS1/2, core kinases in the Hippo pathway, mediated phosphorylation. In this study, we investigated the effect of Angelica gigas Nakai extract (AGNE) on Hippo-YAP/TAZ pathway. First, ANGE induced YAP/TAZ phosphorylation and dissociation of the YAP/TAZ-TEAD transcription complex. By qRT-PCR, we found that ANGE inhibits the expression of YAP/TAZ-TEAD target gene, CTGF and CYR61. In addition, the transcriptional activity of YAP/TAZ was not suppressed significantly in LATS1/2 double-knockout (DKO) cells by ANGE compared to LATS1/2 wild-type (WT) cells, which means AGNE inhibits YAP/TAZ signaling through direct action on LATS1/2. Further, it was confirmed that AGNE-induced activation of LATS1/2 inhibited the migration potential of the vector-expressing cells by suppressing YAP/TAZ activity. The reduced migration potential was restored in active YAP-TEAD expressing cells. Taken together, the results of this study indicate that ANGE downregulates YAP/TAZ signaling in cells through the activation of LATS1/2.

Inflammatory cytokines in midbrain periaqueductal gray contribute to diabetic induced pain hypersensitivity through phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway

  • Guo, Mochi;Jiang, Zongming;Chen, Yonghao;Wang, Fei;Wang, Zhifeng
    • The Korean Journal of Pain
    • /
    • v.34 no.2
    • /
    • pp.176-184
    • /
    • 2021
  • Background: Diabetes-related neuropathic pain frequently occurs, and the underpinning mechanism remains elusive. The periaqueductal gray (PAG) exhibits descending inhibitory effects on central pain transmission. The current work aimed to examine whether inflammatory cytokines regulate mechanical allodynia and thermal hyperalgesia induced by diabetes through the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway in the PAG. Methods: Streptozotocin (STZ) was administered intraperitoneally to mimic allodynia and hyperalgesia evoked by diabetes in rats. Behavioral assays were carried out for determining mechanical pain and thermal hypersensitivity. Immunoblot and ELISA were performed to examine PAG protein amounts of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as their corresponding receptors in STZ rats, and the expression of PI3K/protein kinase B (Akt)/mTOR signaling effectors. Results: Increased PAG p-PI3K/p-Akt/p-mTOR protein amounts were observed in STZ-induced animals, a PI3K-mTOR pathway inhibition in the PAG attenuated neuropathic pain responses. Moreover, the PAG concentrations of IL-1β, IL-6, and TNF-α and their receptors (namely, IL-1R, IL-6R, and tumor necrosis factor receptor [TNFR] subtype TNFR1, respectively) were increased in the STZ rats. Additionally, inhibiting IL-1R, IL-6R, and TNFR1 ameliorated mechanical allodynia and thermal hyperalgesia in STZ rats, alongside the downregulation of PI3K-mTOR signaling. Conclusions: Overall, the current study suggests that upregulated proinflammatory cytokines and their receptors in the PAG activate PI3K-mTOR signaling, thereby producing a de-inhibition effect on descending pathways in modulating pain transmission, and eventually contributing to neuropathic pain.

Inhibition of VRK1 suppresses proliferation and migration of vascular smooth muscle cells and intima hyperplasia after injury via mTORC1/β-catenin axis

  • Sun, Xiongshan;Zhao, Weiwei;Wang, Qiang;Zhao, Jiaqi;Yang, Dachun;Yang, Yongjian
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.244-249
    • /
    • 2022
  • Characterized by abnormal proliferation and migration of vascular smooth muscle cells (VSMCs), neointima hyperplasia is a hallmark of vascular restenosis after percutaneous vascular interventions. Vaccinia-related kinase 1 (VRK1) is a stress adaption-associated ser/thr protein kinase that can induce the proliferation of various types of cells. However, the role of VRK1 in the proliferation and migration of VSMCs and neointima hyperplasia after vascular injury remains unknown. We observed increased expression of VRK1 in VSMCs subjected to platelet-derived growth factor (PDGF)-BB by western blotting. Silencing VRK1 by shVrk1 reduced the number of Ki-67-positive VSMCs and attenuated the migration of VSMCs. Mechanistically, we found that relative expression levels of β-catenin and effectors of mTOR complex 1 (mTORC1) such as phospho (p)-mammalian target of rapamycin (mTOR), p-S6, and p-4EBP1 were decreased after silencing VRK1. Restoration of β-catenin expression by SKL2001 and re-activation of mTORC1 by Tuberous sclerosis 1 siRNA (siTsc1) both abolished shVrk1-mediated inhibitory effect on VSMC proliferation and migration. siTsc1 also rescued the reduced expression of β-catenin caused by VRK1 inhibition. Furthermore, mTORC1 re-activation failed to recover the attenuated proliferation and migration of VSMC resulting from shVrk1 after silencing β-catenin. We also found that the vascular expression of VRK1 was increased after injury. VRK1 inactivation in vivo inhibited vascular injury-induced neointima hyperplasia in a β-catenin-dependent manner. These results demonstrate that inhibition of VRK1 can suppress the proliferation and migration of VSMC and neointima hyperplasia after vascular injury via mTORC1/β-catenin pathway.

Biased Dopamine D2 Receptors Exhibit Distinct Intracellular Trafficking Properties and ERK Activation in Different Subcellular Domains

  • Shujie Wang;Lulu Peng;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.56-64
    • /
    • 2024
  • Biased signaling or functional selectivity refers to the ability of an agonist or receptor to selectively activate a subset of transducers such as G protein and arrestin in the case of G protein-coupled receptors (GPCRs). Although signaling through arrestin has been reported from various GPCRs, only a few studies have examined side-by-side how it differs from signaling via G protein. In this study, two signaling pathways were compared using dopamine D2 receptor (D2R) mutants engineered via the evolutionary tracer method to selectively transduce signals through G protein or arrestin (D2G and D2Arr, respectively). D2G mediated the inhibition of cAMP production and ERK activation in the cytoplasm. D2Arr, in contrast, mediated receptor endocytosis accompanied by arrestin ubiquitination and ERK activation in the nucleus as well as in the cytoplasm. D2Arr-mediated ERK activation occurred in a manner dependent on arrestin3 but not arrestin2, accompanied by the nuclear translocation of arrestin3 via importin1. D2R-mediated ERK activation, which occurred in both the cytosol and nucleus, was limited to the cytosol when cellular arrestin3 was depleted. This finding supports the results obtained with D2Arr and D2G. Taken together, these observations indicate that biased signal transduction pathways activate distinct downstream mechanisms and that the subcellular regions in which they occur could be different when the same effectors are involved. These findings broaden our understanding on the relation between biased receptors and the corresponding downstream signaling, which is critical for elucidating the functional roles of biased pathways.

Application of the CRISPR/Cas System for Point-of-care Diagnosis of Cattle Disease (현장에서 가축질병을 진단하기 위한 CRISPR/Cas 시스템의 활용)

  • Lee, Wonhee;Lee, Yoonseok
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.313-319
    • /
    • 2020
  • Recently, cattle epidemic diseases are caused by a pathogen such as a virus or bacterium. Such diseases can spread through various pathways, such as feed intake, respiration, and contact between livestock. Diagnosis based on the ELISA (Enzyme-linked immunosorbent assay) and PCR (Polymerase chain reaction) methods has limitations because these traditional diagnostic methods are time consuming assays that require multiple steps and dedicated equipment. In this review, we propose the use of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Cas system based on DNA and RNA levels for early point-of-care diagnosis in cattle. In the CRISPR/Cas system, Cas effectors are classified into two classes and six subtypes. The Cas effectors included in class 2 are typically Cas9 in type II, Cas12 in type V (Cas12a and Cas12b) and Cas13 in type VI (Cas13a and Cas13b). The CRISPR/Cas system uses reporter molecules that are attached to the ssDNA strands. When the Cas enzyme cuts the ssDNA, these reporters either fluoresce or change color, indicating the presence of a specific disease marker. There are several steps in the development of a CRISPR/Cas system. The first is to select the Cas enzyme depending on DNA or RNA from pathogens (viruses or bacteria). Based on that, the next step is to integrate the optimal amplification, transducing method, and signal reporter. The CRISPR/Cas system is a powerful diagnostic tool using a gene-editing method, which is faster, better, and cheaper than traditional methods. This system could be used for early diagnosis of epidemic cattle diseases and help to control their spread.

Effects of an Aqueous Extract of Asparagus cochinchinensis on the Regulation of Nerve Growth Factor in Neuronal Cells (신경세포에서 신경성장인자(nerve growth factor)의 조절에 미치는 천문동(Asparagus cochinchinensis) 열수추출물의 영향)

  • Lee, Hyun Ah;Kim, Ji Eun;Song, Sung Hwa;Sung, Ji Eun;Jung, Min Gi;Kim, Dong Seob;Son, Hong Joo;Lee, Chung Yeoul;Lee, Hee Seob;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.509-518
    • /
    • 2016
  • Asparagus cochinchinensis is a medical plant that has long been used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although several studies have been conducted on the anti-neuroinflammatory effects of A. cochinchinensis, the correlation between these effects and nerve growth factor (NGF) has not yet been examined. In this study, we investigated the effects of an aqueous extract of A. cochinchinensis (AEAC) on the secretion and action mechanism of NGF in neuronal cells. The concentration of the NGF protein in the supernatant collected from cultured cells increased significantly in B35 cells treated with AEAC in comparison with the vehicle-treated group without any specific cytotoxicity. Furthermore, the mRNA expression of NGF showed a very similar pattern to its protein concentration. To examine the bioactivity of NGF secreted from B35 cells, undifferentiated PC12 cells were cultured in an AEAC-conditioned medium and neuritic outgrowth was observed. The dendrite length of PC12 cells in the AEAC-treated group was significantly higher than that in the vehicle-treated group. Moreover, the level of the downstream effectors p-TrkA and p-ERK of the high-affinity NGF receptor was significantly higher in the AEAC-treated group, while the expression of the downstream effectors of the low-affinity NGF receptor was significantly lower in the same group. These results suggest that AEAC may contribute to the regulation of NGF expression and secretion in neuronal cells; it is therefore an excellent candidate for further investigation as a therapeutic drug for neurodegenerative diseases.

Immune Cells Are Differentially Affected by SARS-CoV-2 Viral Loads in K18-hACE2 Mice

  • Jung Ah Kim;Sung-Hee Kim;Jeong Jin Kim;Hyuna Noh;Su-bin Lee;Haengdueng Jeong;Jiseon Kim;Donghun Jeon;Jung Seon Seo;Dain On;Suhyeon Yoon;Sang Gyu Lee;Youn Woo Lee;Hui Jeong Jang;In Ho Park;Jooyeon Oh;Sang-Hyuk Seok;Yu Jin Lee;Seung-Min Hong;Se-Hee An;Joon-Yong Bae;Jung-ah Choi;Seo Yeon Kim;Young Been Kim;Ji-Yeon Hwang;Hyo-Jung Lee;Hong Bin Kim;Dae Gwin Jeong;Daesub Song;Manki Song;Man-Seong Park;Kang-Seuk Choi;Jun Won Park;Jun-Won Yun;Jeon-Soo Shin;Ho-Young Lee;Ho-Keun Kwon;Jun-Young Seo;Ki Taek Nam;Heon Yung Gee;Je Kyung Seong
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.7.1-7.19
    • /
    • 2024
  • Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virus-infected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105 PFU; however, 1×12 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha;Dangol, Sarmina;Chen, Yafei;Choi, Jihyun;Cho, Yoon-Seong;Lee, Jea-Eun;Choi, Mi-Ok;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.426-438
    • /
    • 2016
  • Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.

Development of the Maintenance Process Using Virtual Prototyping for the Equipment in the MSM's Unreachable Area of the Hot cell

  • Lee, Jong-Youl;Song, Tai-Gil;Kim, Sung-Hyun;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1354-1358
    • /
    • 2003
  • The process equipment for handling high level radioactive materials like spent fuels is operated in a hot cell, due to high radioactivity. Thus, this equipment should be maintained and repaired optimally by a remotely operated manipulator. The master-slave manipulators(MSM) are widely used as a remote handling device in the hot cell. The equipment in the hot cell should be optimally placed within the workspace of the wall-mounted slave manipulator for the maintenance operation. But, because of the complexity in the hot cell, there would be some parts of the equipment that are not reached by the MSM. In this study, the maintenance process for these parts of the equipment is developed using virtual prototyping technology. To analyze the workspace of the maintenance device in the hot cell and to develop the maintenance processes for the process equipment, the virtual mock-up of the hot cell for the spent fuel handling process is implemented using IGRIP. For the implementation of the virtual mock-up, the parts of the equipment and maintenance devices such as the MSM and servo manipulator are modeled and assembled in 3-D graphics, and the appropriate kinematics are assigned. Also, the virtual workcell of the spent fuel management process is implemented in the graphical environment, which is the same as the real environment. Using this mock-up, the workspace of the manipulators in the hot cell and the operator's view through the wall-mounted lead glass are analyzed. Also, for the dedicated maintenance operation, the analyses for the detailed area of the end effectors in accordance with the slave manipulator's position and orientation are carried out. The parts of the equipment that are located outside of the MSM's workspace are specified and the maintenance process of the parts using the servo manipulator that is mounted in the hot cell is proposed. To monitor the process in the hot cell remotely, the virtual display system by a virtual camera in the virtual work cell is also proposed. And the graphic simulation using a virtual mock-up is performed to verify the proposed maintenance process. The maintenance process proposed in this study can be effectively used in the real hot cell operation and the implemented virtual mock-up can be used for analyzing the various hot cell operations and enhancing the reliability and safety of the spent fuel management.

  • PDF

Ras GTPases and Ras GTPase Activating Proteins (RasGAPs) in Human Disease (Ras GTPase 및 Ras GTPase activating protein과 사람의 질병)

  • Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1100-1117
    • /
    • 2018
  • The Ras superfamily of small G-proteins acts as a molecular switch on the intracellular signaling pathway. Upon ligand stimulation, inactive GTPases (Ras-GDP) are activated (Ras-GTP) using guanine nucleotide exchange factor (GEF) and transmit signals to their downstream effectors. Following signal transmission, active Ras-GTP become inactive Ras-GDP and cease signaling. However, the intrinsic GTPase activity of Ras proteins is weak, requiring Ras GTPase-activating protein (RasGAP) to efficiently convert RAS-GTP to Ras-GDP. Since deregulation of the Ras pathway is found in nearly 30% of all human cancers, it might be useful to clarify the structural and physiological roles of Ras GTPases. Recently, RasGAP has emerged as a new class of tumor-suppressor protein and a potential therapeutic target for cancer. Therefore, it is important to clarify the physiological roles of the individual GAPs in human diseases. The first RasGAP discovered was RASA1, also known as p120 RasGAP. RASA1 is widely expressed, independent of cell type and tissue distribution. Subsequently, neurofibromatosis type 1 (NF1) was discovered. The remaining GAPs are affiliated with the GAP1 and synaptic GAP (SynGAP) families. There are more than 170 Ras GTPases and 14 Ras GAP members in the human genome. This review focused on the current understanding of Ras GTPase and RasGAP in human diseases, including cancers.