DOI QR코드

DOI QR Code

Ras GTPases and Ras GTPase Activating Proteins (RasGAPs) in Human Disease

Ras GTPase 및 Ras GTPase activating protein과 사람의 질병

  • Chang, Jong-Soo (Department of Life Science, College of Science and Technology, Daejin University)
  • 장종수 (대진대학교 생명화학부)
  • Received : 2018.07.24
  • Accepted : 2018.08.20
  • Published : 2018.09.30

Abstract

The Ras superfamily of small G-proteins acts as a molecular switch on the intracellular signaling pathway. Upon ligand stimulation, inactive GTPases (Ras-GDP) are activated (Ras-GTP) using guanine nucleotide exchange factor (GEF) and transmit signals to their downstream effectors. Following signal transmission, active Ras-GTP become inactive Ras-GDP and cease signaling. However, the intrinsic GTPase activity of Ras proteins is weak, requiring Ras GTPase-activating protein (RasGAP) to efficiently convert RAS-GTP to Ras-GDP. Since deregulation of the Ras pathway is found in nearly 30% of all human cancers, it might be useful to clarify the structural and physiological roles of Ras GTPases. Recently, RasGAP has emerged as a new class of tumor-suppressor protein and a potential therapeutic target for cancer. Therefore, it is important to clarify the physiological roles of the individual GAPs in human diseases. The first RasGAP discovered was RASA1, also known as p120 RasGAP. RASA1 is widely expressed, independent of cell type and tissue distribution. Subsequently, neurofibromatosis type 1 (NF1) was discovered. The remaining GAPs are affiliated with the GAP1 and synaptic GAP (SynGAP) families. There are more than 170 Ras GTPases and 14 Ras GAP members in the human genome. This review focused on the current understanding of Ras GTPase and RasGAP in human diseases, including cancers.

Ras superfamily에 속하는 monomeric small GTPase는 현재까지 170여 종이 알려져 있으며 이들은 세포 신호전달에 있어서 분자 스위치(molecular switch)로 작용하고 있다. Ras GTPase는 guanosine diphosphate (GDP)와 결합하여 불활성화 되거나 혹은 guanosine triphosphate (GTP)와 결합하여 활성화되는 guanosine nucleotide 결합단백질로서 세포내의 수많은 생리작용을 조절하고 있다. 즉, 쉬고 있던 불활성화 상태의 Ras-GDP는 외부 신호에 반응하여 활성화 된 guanine nucleotide exchange factor (GEF)에 의하여 활성형인 Ras-GTP상태로 전환되어 그 하류로 신호를 전달하는 효과기로 작용하게 된다. 신호전달을 마친 Ras-GTP는 다시 불활성형인 Ras-GDP로 전환되어야 하는데 Ras 자체의 GTPase 활성이 미약하여 RasGTPase activating protein (RasGAP)의 도움을 받아야만 한다. 이와 같이 Ras GTPase는 GEF와 GAP의 활성으로 세포 안의 스위치를 켜고 끄게 된다. 현재까지 알려진 인간 암(cancer)의 30% 이상이 돌연변이를 포함하는 Ras switch의 비정상적인 작동에 기인한다는 점이 밝혀져 있으므로 Ras GTPase의 구조와 생리적 기능에 대한 최근의 연구결과들을 요약하였다. 나아가 GTPase activating protein으로서의 기능을 상실한 RasGAP분자의 돌연변이는 세포 안의 Ras 스위치를 계속 켜 두는 상태인 Ras-GTP 상태를 유발함으로서 종국에는 암의 발생을 촉발하게 된다. 이에, 본고에서는 최근에 와서 tumor suppressor로서 알려지면서 암의 치료 표적단백질로 떠오르게 된 RasGAP의 인체생리학적 기능을 고찰하였다. 인간 게놈 안에는 RASA1, NF1, GAP1 family 및 SynGAP family 등에 속하는 14종의 RasGAP 분자들이 존재하는데 이들 GAP분자들의 이상과 인간 질병의 연관성에 대한 최근의 연구결과들에 대해 고찰하였다.

Keywords

References

  1. Abramowicz, A. and Gos, M. 2014. Neurofibromin in neurofibromatosis type 1 - mutations in NF1gene as a cause of disease. Dev. Period. Med. 18, 297-306.
  2. Agazie, Y. M., Movilla, N., Ischenko, I. and Hayman, M. J. 2003. The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene 22, 6909-6918. https://doi.org/10.1038/sj.onc.1206798
  3. Ahmadian, M. R., Hoffmann, U., Goody, R. S. and Wittinghofer, A. 1997. Individual rate constants for the interaction of Ras protein with GTPase-activating protein determined by fluorescence spectroscopy. Biochemistry 36, 4535-4541. https://doi.org/10.1021/bi962556y
  4. Ahmadian, M. R., Kiel, C., Stege, P. and Scheffzek, K. 2003. Structural fingerprints of the Ras-GTPase activating proteins neurofibromin and p120GAP. J. Mol. Biol. 329, 699-710. https://doi.org/10.1016/S0022-2836(03)00514-X
  5. Allen, M., Chu, S., Brill, S., Stotler, C. and Buckler, A. 1998. Restricted tissue expression pattern of a novel human rasGAP-related gene and its murine ortholog. Gene 218, 17-25. https://doi.org/10.1016/S0378-1119(98)00394-1
  6. Anand, S., Majeti, B. K., Acevedo, L. M., Murphy, E. A., Mukthavaram, R., Scheppke, L., Huang, M., Shields, D. J., Lindquist, J. N., Lapinski, P. E., King, P. D., Weis, S. M. and Cheresh, D. A. 2010. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med. 16, 909-914. https://doi.org/10.1038/nm.2186
  7. Arafeh, R., Qutob, N., Emmanuel, R., Keren-Paz, A., Madore, J., Elkahloun, A., Wilmott, J. S., Gartner, J. J., Di Pizio, A., Winograd-Katz, S., Sindiri, S., Rotkopf, R., Dutton-Regester, K., Johansson, P., Pritchard, A. L., Waddell, N., Hill, V. K., Lin, J. C., Hevroni, Y., Rosenberg, S. A., Khan, J., Ben-Dor, S., Niv, M. Y., Ulitsky, I., Mann, G. J., Scolyer, R. A., Hayward, N. K. and Samuels, Y. 2015. Recurrent inactivating RASA2 mutations in melanoma. Nat. Genet. 47, 1408-1410. https://doi.org/10.1038/ng.3427
  8. Ballester, R., Marchuk, D., Boguski, M., Saulino, A., Letcher, R., Wigler, M. and Collins, F. 1990. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851-859. https://doi.org/10.1016/0092-8674(90)90151-4
  9. Baralle, M. and Baralle, D. 2012. Splicing mechanisms and mutations in the NF1 gene. In: Upadhyaya, M. and Cooper, D. (eds) Neurofibromatosis tyie 1. Springer, Berlin, Heidelberg. pp 135-150.
  10. Basu, T. N., Gutmann, D. H., Fletcher, J. A., Glover, T. W., Collins, F. S. and Downward, J. 1992. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356, 713-715. https://doi.org/10.1038/356713a0
  11. Bechtel, W., McGoohan, S., Zeisberg, E. M., Muller, G. A., Kalbacher, H., Salant, D. J., Muller, C. A., Kalluri, R. and Zeisberg, M. 2010. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544-550. https://doi.org/10.1038/nm.2135
  12. Bernard, A. 2003. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim. Biophysi. Acta. 1603, 47-82.
  13. Blanc, L., Ciciotte, S. L., Gwynn, B., Hildick-Smith, G. J., Pierce, E. L., Soltis, K. A., Cooney, J. D., Paw, B. H. and Peters, L. L. 2012. Critical function for the Ras-GTPase activating protein RASA3 in vertebrate erythropoiesis and megakaryopoiesis. Proc. Natl. Acad. Sci. USA. 109, 12099-12104. https://doi.org/10.1073/pnas.1204948109
  14. Bollag, G. Clapp, D. W., Shih, S., Adler, F., Zhang, Y. Y., Thompson, P., Lange, B. J., Freedman, M. H., McCormick, F., Jacks, T. and Shannon, K. 1996. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat. Genet. 12, 144-148. https://doi.org/10.1038/ng0296-144
  15. Boon, L. M., Mulliken, J. B. and Vikkula, M. 2005. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr. Opin. Genet. Dev. 15, 265-269. https://doi.org/10.1016/j.gde.2005.03.004
  16. Bos, J. L. 1989. Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682-4689.
  17. Bos, J. L., Rehmann, H. and Wittinghofer, A. 2007. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865-877. https://doi.org/10.1016/j.cell.2007.05.018
  18. Bourguignon, L. Y., Gilad, E., Rothman, K. and Peyrollier, K. 2005. Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J. Biol. Chem. 280, 11961-11972. https://doi.org/10.1074/jbc.M411985200
  19. Brannan, C. I., Perkins, A. S., Vogel, K. S., Ratner, N., Nordlund, M. L., Reid, S. W., Buchberg, A. M., Jenkins, N. A., Parada, L. F. and Copeland, N. G. 1994. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8, 1019-1029. https://doi.org/10.1101/gad.8.9.1019
  20. Brems, H., Chmara, M., Sahbatou, M., Denayer, E., Taniguchi, K., Kato, R., Somers, R., Messiaen, L., De Schepper, S., Fryns, J. P., Cools, J., Marynen, P., Thomas, G., Yoshimura, A. and Legius, E. 2007. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat. Genet. 39, 1120-1126. https://doi.org/10.1038/ng2113
  21. Brems, H., Park, C., Maertens, O., Pemov, A., Messiaen, L., Upadhyaya, M., Claes, K., Beert, E., Peeters, K., Mautner, V., Sloan, J. L., Yao, L., Lee, C. C., Sciot, R., De Smet, L., Legius, E. and Stewart, D. R. 2009. Glomus tumors in neurofibromatosis type 1: genetic, functional, and clinical evidence of a novel association. Cancer Res. 69, 7393-7401. https://doi.org/10.1158/0008-5472.CAN-09-1752
  22. Brill, S., Li, S., Lyman, C. W., Church, D. M., Wasmuth, J. J., Weissbach, L., Bernards, A. and Snijders, A. J. 1996. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol. Cell. Biol. 16, 4869-4878. https://doi.org/10.1128/MCB.16.9.4869
  23. Bryant, S. S., Briggs, S., Smithgall, T. E., Martin, G. A., McCormick, F., Chang, J. H., Parsons, S. J. and Jove, R. 1995. Two SH2 domains of p120 Ras GTPase-activating protein bind synergistically to tyrosine phosphorylated p190 Rho GTPase-activating protein. J. Biol. Chem. 270, 17947-17952. https://doi.org/10.1074/jbc.270.30.17947
  24. Buday, L. and Downward, J. 2008. Many faces of Ras activation. Biochim. Biophys. Acta. 1786, 178-187.
  25. Burridge, K. and Wennerberg, K. 2004. Rho and Rac take center stage. Cell 116, 167-179. https://doi.org/10.1016/S0092-8674(04)00003-0
  26. Burrows, N., Telfer, B., Brabant, G. and Williams, K. J. 2013. Inhibiting the phosphatidylinositide 3-kinase pathway blocks radiation-induced metastasis associated with Rho-GTPase and Hypoxia-inducible factor-1 activity. Radiother. Oncol. 108, 548-553. https://doi.org/10.1016/j.radonc.2013.06.027
  27. Calvisi, D. F., Ladu, S., Conner, E. A., Seo, D., Hsieh, J. T., Factor, V. M. and Thorgeirsson, S. S. 2011, Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer. J. Hepatol. 54, 311-319. https://doi.org/10.1016/j.jhep.2010.06.036
  28. Cantley, L. C. 2002. The phosphoinositide 3-kinase pathway. Science 296, 1655-1657. https://doi.org/10.1126/science.296.5573.1655
  29. Carazo-Salas, R. E., Gruss, O. J., Mattaj, I. W. and Karsenti, E. 2001. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat. Cell Biol. 3, 228-234. https://doi.org/10.1038/35060009
  30. Carlisle, H. J., Manzerra, P., Marcora, E. and Kennedy, M. B. 2008. SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin. J. Neurosci. 28, 13673-13683. https://doi.org/10.1523/JNEUROSCI.4695-08.2008
  31. Castellano, E. and Downward, J. 2011. RAS interaction with PI3K: More than just another effector pathway. Genes Cancer 2, 261-274. https://doi.org/10.1177/1947601911408079
  32. Cawthon, R. M., Weiss, R., Xu, G. F., Viskochil, D., Culver, M., Stevens, J., Robertson, M., Dunn, D., Gesteland, R., O'Connell, P. and White, R. 1990. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62, 193-201. https://doi.org/10.1016/0092-8674(90)90253-B
  33. Chang, J. S. 2003. Pleckstrin homology domain. Biochem. Mol. Biol. News. 23, 209-216
  34. Chang, L. and Karin, M. 2001. Mammalian MAP kinase signalling cascades. Nature 410, 37-40. https://doi.org/10.1038/35065000
  35. Chen, H., Pong, R. C., Wang, Z. and Hsieh, J. T. 2002. Differential regulation of the human gene DAB2IP in normal and malignant prostatic epithelia: cloning and characterization. Genomics 79, 573-581. https://doi.org/10.1006/geno.2002.6739
  36. Chen, H., Toyooka, S., Gazdar, A. F. and Hsieh, J. T. 2003. Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. J. Biol. Chem. 278, 3121-313.0 https://doi.org/10.1074/jbc.M208230200
  37. Chen, Y. L., Huang, W. C., Yao, H. L., Chen, P. M., Lin, P. Y., Feng, F. Y. and Chu, P. Y. 2017. Down-regulation of RASA1 Is associated with poor prognosis in human hepatocellular carcinoma. Anticancer Res. 37. 781-785. https://doi.org/10.21873/anticanres.11377
  38. Cherfils, J. and Zeghouf, M. 2013. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93, 269-309. https://doi.org/10.1152/physrev.00003.2012
  39. Cockcroft, S., Way, G., O'Luanaiqh, N., Sarri, E. and Fensome, A. 2002. Signalling role for ARF and phospholipase D in mast cell exocytosis stimulated by crosslinking of the high affinity FcepsilonR1 receptor. Mol. Immunol. 38, 1277-1282. https://doi.org/10.1016/S0161-5890(02)00075-5
  40. Colicelli, J. 2004. Human RAS superfamily proteins and related GTPases. Sci. STKE. 250, RE13.
  41. Cooper, J. A. and Kashishian, A. 1993. In vivo binding properties of SH2 domains from GTPase-activating protein and phophatidylinositol 3-kinase. Mol. Cell Biol. 13, 1737-1745. https://doi.org/10.1128/MCB.13.3.1737
  42. Cozier, G. E, Bouyoucef, D. and Cullen, P. J. 2003. Engineering the phosphoinositide-binding profile of a class I pleckstrin homology domain. J. Biol. Chem. 278, 39489-39496. https://doi.org/10.1074/jbc.M307785200
  43. Cozier, G. E., Lockyer, P. J., Reynolds, J. S., Kupzig, S., Bottomley, J. R., Millard, T. H., Banting, G. and Cullen, P. J. 2000. GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J. Biol. Chem. 275, 28261-28268.
  44. Cullen, P. J. and Lockyer, P. J. 2002. Integration of calcium and Ras signalling. Nat. Rev. Mol. Cell. Biol. 3, 339-348.
  45. Cupit, L. D., Schmidt, V. A., Miller, F. and Bahou, W. F. 2004. Distinct PAR/IQGAP expression patterns during murine development: implications for thrombin-associated cytoskeletal reorganization. Mamm. Genome 15, 618-629. https://doi.org/10.1007/s00335-004-2370-8
  46. D'Angelo, I., Welti, S., Bonneau, F. and Scheffzek, K. 2006. A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein. EMBO Rep. 7, 174-179. https://doi.org/10.1038/sj.embor.7400602
  47. Davletov, B. A. and Sudhof, T. C. 1993. A single C2 domain from synaptotagmin I is sufficient for high affinity $Ca^{2+}$/phospholipid binding. J. Biol. Chem. 268, 26386-26390.
  48. Davoli, T. 1., Xu, A. W., Mengwasser, K. E., Sack, L. M., Yoon, J. C., Park, P. J. and Elledge, S. J. 2013. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948-962. https://doi.org/10.1016/j.cell.2013.10.011
  49. De Schepper, S., Maertens, O., Callens, T., Naeyaert, J. M., Lambert, J. and Messiaen, L. 2008. Somatic mutation analysis in NF1 cafe au lait spots reveals two NF1 hits in the melanocytes. J. Invest. Dermatol. 128, 1050-1053. https://doi.org/10.1038/sj.jid.5701095
  50. de Wijn, R. S., Oduber, C. E., Breugem, C. C., Alders, M., Hennekam, R. C. and van der Horst, C. M. 2012. Phenotypic variability in a family with capillary malformations caused by a mutation in the RASA1 gene. Eur. J. Med Genet. 55, 191-195. https://doi.org/10.1016/j.ejmg.2012.01.009
  51. DeClue, J. E., Papageorge, A. G., Fletcher, J. A., Diehl, S. R., Ratner, N., Vass, W. C. and Lowy, D. R. 1992. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69, 265-273. https://doi.org/10.1016/0092-8674(92)90407-4
  52. Diez, D., Sanchez-Jimenez, F. and Ranea, J. A. 2011. Evolutionary expansion of the Ras switch regulatory module in eukaryotes. Nucleic Acids Res. 39, 5526-5537. https://doi.org/10.1093/nar/gkr154
  53. Dong, P., Nabeshima, K., Nishimura, N., Kawakami, T., Hachisuga, T., Kawarabayashi, T. and Iwasaki, H. 2006. Overexpression and diffuse expression pattern of IQGAP1 at invasion fronts are independent prognostic parameters in ovarian carcinomas. Cancer Lett. 243, 120-127. https://doi.org/10.1016/j.canlet.2005.11.024
  54. Donovan, S., Shannon, K. M. and Bollag, G. 2002. GTPase activating proteins: critical regulators of intracellular signaling. Biochim. Biophys. Acta. 1602, 23-45.
  55. Dote, H., Toyooka, S., Tsukuda, K., Yano, M., Ota, T., Murakami, M., Naito, M., Toyota, M., Gazdar, A. F. and Shimizu, N. 2005. Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in gastrointestinal tumour. Br. J. Cancer 92, 1117-1125. https://doi.org/10.1038/sj.bjc.6602458
  56. Dote. H., Toyooka, S., Tsukuda, K., Yano, M., Ouchida, M., Doihara, H., Suzuki, M., Chen, H., Hsieh, J. T., Gazdar, A. F. and Shimizu, N. 2004. Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in breast cancer. Clin. Cancer Res. 10, 2082-2089. https://doi.org/10.1158/1078-0432.CCR-03-0236
  57. Du, K. and Montminy, M. 1998. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273, 32377-32379. https://doi.org/10.1074/jbc.273.49.32377
  58. Duggan, Zheng, S. L., Knowlton, M., Benitez, D., Dimitrov, L., Wiklund, F., Robbins, C., Isaacs, S. D., Cheng, Y., Li, G., Sun, J, Chang, B. L., Marovich, L., Wiley, K. E., Stattin, P., Adami, H. O., Gielzak, M., Yan, G., Sauvageot, J., Liu, W., Kim, J. W., Bleeker, E. R., Meyers, D. A., Trock, B. J., Partin, A. W., Walsh, P. C., Isaacs, W. B., Gronberg, H., Xu, J. and Carpten, J. D. 2007. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J. Nat. Cancer Inst. 99, 1836-1844. https://doi.org/10.1093/jnci/djm250
  59. Eerola, I., Boon, L. M., Mulliken, J. B., Burrows, P. E., Dompmartin, A., Watanabe, S., Vanwijck, R. and Vikkula, M. 2003. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am. J. Hum. Genet. 73, 1240-1249. https://doi.org/10.1086/379793
  60. Ekman, S., Thuresson, E. R., Heldin, C. H. and Ronnstrand, L. 1999. Increased mitogenicity of an alphabeta heterodimeric PDGF receptor complex correlates with lack of RasGAP binding. Oncogene 18, 2481-248. https://doi.org/10.1038/sj.onc.1202606
  61. Engelman, J. A. 2009. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550-562. https://doi.org/10.1038/nrc2664
  62. Erickson, J. W., Cerione, R. A. and Hart, M. J. 1997. Identification of an actin cytoskeletal complex that includes IQGAP and the Cdc42 GTPase. J. Biol. Chem. 26, 24443-24447.
  63. Fantl, W. J., Escobedo, J. A., Martin, G. A., Turck, C. W., del Rosario, M., McCormick, F. and Williams, L. T. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69, 413-42.3 https://doi.org/10.1016/0092-8674(92)90444-H
  64. Feng, M., Bao, Y., Li, J., Gong, M., Wang, J., Marzese, D. M., Donovan, N., Tan, E. Y., Hoon, D. S. and Yu, Q. 2014. RASAL2 activates Rac1 to promote triple-negative breast cancer progression. J. Clin. Invest. 124, 5291-5304. https://doi.org/10.1172/JCI76711
  65. Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F. and Kaibuchi, K. 2002. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873-885. https://doi.org/10.1016/S0092-8674(02)00800-0
  66. Gaul, U., Mardon, G. and Rubin, G. M. 1992. A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell 68, 1007-1009. https://doi.org/10.1016/0092-8674(92)90073-L
  67. Gioeli, D., Mandell, J. W., Petroni, G. R., Frierson, H. F. Jr. and Weber, M. J. 1999. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 59, 279-284.
  68. Gitler, A. D., Kong, Y., Choi, J. K., Zhu, Y., Pear, W. S. and Epstein, J. A. 2004. Tie2-Cre-induced inactivation of a conditional mutant Nf1 allele in mouse results in a myeloproliferative disorder that models juvenile myelomonocytic leukemia. Pediatr. Res. 55, 581-584. https://doi.org/10.1203/01.PDR.0000113462.98851.2E
  69. Grady, W. M. and Markowitz, S. D. 2002. Genetic and epigenetic alterations in colon cancer. Annu. Rev. Genomics Hum. Genet. 3, 101-128. https://doi.org/10.1146/annurev.genom.3.022502.103043
  70. Guo, H. F., Tong, J., Hannan, F., Luo, L. and Zhong, Y. 2000. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403, 895-898. https://doi.org/10.1038/35002593
  71. Guo, X., Hamilton, P. J., Reish, N. J., Sweatt, J. D., Miller, C. A. and Rumbaugh, G. 2009. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia. Neuropsychopharmacology 34, 1659-1672. https://doi.org/10.1038/npp.2008.223
  72. Hamdan, F. F., Gauthier, J., Spiegelman, D., Noreau, A., Yang, Y., Pellerin, S., Dobrzeniecka, S., Cote, M., Perreau-Linck, E., Carmant, L., D'Anjou, G., Fombonne, E., Addington, A. M., Rapoport, J. L., Delisi, L. E., Krebs, M. O., Mouaffak, F., Joober, R., Mottron, L., Drapeau, P., Marineau, C., Lafreniere, R. G., Lacaille, J. C., Rouleau, G. A., Michaud, J. L. and Synapse to Disease Group. 2009. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. New Engl. J. Med. 360, 599-605. https://doi.org/10.1056/NEJMoa0805392
  73. Hedman, A. C., Smith, J. M. and Sacks, D. B. 2015. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep. 16, 427-44. https://doi.org/10.15252/embr.201439834
  74. Henkemeyer, M., Rossi, D. J., Holmyard, D. P., Puri, M. C., Mbamalu, G., Harpal, K., Shih, T. S., Jacks, T. and Pawson, T. 1995. Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377, 695-701. https://doi.org/10.1038/377695a0
  75. Honda, A. 1., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A. J., Frohman, M. A. and Kanaho, Y. 1999. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521-523. https://doi.org/10.1016/S0092-8674(00)81540-8
  76. Hordijk, P. L. 2006. Regulation of NADPH oxidases: the role of Rac proteins. Circ. Res. 98, 453-462. https://doi.org/10.1161/01.RES.0000204727.46710.5e
  77. Hu, K. Q. and Settleman, J. 1997. Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO J. 16, 473-483. https://doi.org/10.1093/emboj/16.3.473
  78. Ismat, F. A., Xu, J., Lu, M. M. and Epstein, J. A. 2006. The neurofibromin GAP-related domain rescues endothelial but not neural crest development in Nf1 mice. J. Clin. Invest. 116, 2378-2384.
  79. Iwashita, S., Kobayashi, M., Kubo, Y., Hinohara, Y., Sezaki, M., Nakamura, K., Suzuki-Migishima, R., Yokoyama, M., Sato, S., Fukuda, M., Ohba, M., Kato, C., Adachi, E. and Song, S. Y. 2007. Versatile roles of R-Ras GAP in neurite formation of PC12 cells and embryonic vascular development. J. Biol. Chem. 282, 3413-3417.
  80. Jacks, T., Shih, T. S., Schmitt, E. M., Bronson, R. T., Bernards, A. and Weinberg, R. A. 1994. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat. Genet. 7, 353-361. https://doi.org/10.1038/ng0794-353
  81. Jaffee, E. M., Hruban, R. H., Canto, M., Kern, S. E. 2002. Focus on pancreas cancer. Cancer Cell. 2, 25-28. https://doi.org/10.1016/S1535-6108(02)00093-4
  82. Jeong, J. H., Wang, Z., Guimaraes, A. S., Ouyang, X., Figueiredo, J. L., Ding, Z., Jiang, S., Guney, I., Kang, G. H., Shin, E., Hahn, W. C., Loda, M. F., Abate-Shen, C., Weissleder, R. and Chin, L. 2008. BRAF activation initiates but does not maintain invasive prostate adenocarcinoma. PLoS One 3, e3949. https://doi.org/10.1371/journal.pone.0003949
  83. Jin, H., Wang, X., Ying, J., Wong, A. H., Cui, Y., Srivastava, G., Shen, Z. Y., Li, E. M., Zhang, Q., Jin, J., Kupzig, S., Chan, A. T., Cullen, P. J. and Tao, Q. 2007. Epigenetic silencing of a $Ca^{(2+)}$-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers. Proc. Natl. Acad. Sci. USA. 104, 12353-12348. https://doi.org/10.1073/pnas.0700153104
  84. Jin, S. H., Akiyama, Y., Fukamachi, H., Yanagihara, K., Akashi, T. and Yuasa, Y. 2008. IQGAP2 inactivation through aberrant promoter methylation and promotion of invasion in gastric cancer cells. Int. J. Cancer 122, 1040-1046.
  85. Johannessen, C. M., Reczek, E. E., James, M. F., Brems, H., Legius, E. and Cichowski, K. 2005. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl. Acad. Sci. USA. 102, 8573-8578. https://doi.org/10.1073/pnas.0503224102
  86. Jones, D. H., Morris, J. B., Morgan, C. P., Kondo, H., Irvine, R. F. and Cockcroft, S. 2000. Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the golgi compartment. J. Biol. Chem. 275, 13962-13866. https://doi.org/10.1074/jbc.C901019199
  87. Jouhilahti, E. M., Peltonen, S., Heape, A. M. and Peltonen, J. 2011. The pathoetiology of neurofibromatosis 1. Am. J. Pathol. 178, 1932-1939. https://doi.org/10.1016/j.ajpath.2010.12.056
  88. Kahn, R. A. and Gilman, A. G.1984. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J. Biol. Chem. 259, 6228-6234.
  89. Karnoub, A. E. and Weinberg, R. A. 2008. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell. Biol. 9, 517-531. https://doi.org/10.1038/nrm2438
  90. Kazlauskas, A., Ellis, C., Pawson, T. and Cooper, J. A. 1990. Binding of GAP to activated PDGF receptors. Science 247, 1578-1581. https://doi.org/10.1126/science.2157284
  91. Kim, J. H., Lee, H. K., Takamiya, K. and Huganir, R. L. 2003. The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J. Neurosci. 23, 1119-1124. https://doi.org/10.1523/JNEUROSCI.23-04-01119.2003
  92. Kim, J. H., Liao, D., Lau, L. F. and Huganir, R. L. 1998. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683-691. https://doi.org/10.1016/S0896-6273(00)81008-9
  93. Knuesel, I., Elliott, A., Chen, H. J., Mansuy, I. M. and Kennedy, M. B. 2005. A role for synGAP in regulating neuronal apoptosis. Eur. J. Neurosci. 21, 611-621. https://doi.org/10.1111/j.1460-9568.2005.03908.x
  94. Kolfschoten, I. G., van Leeuwen, B., Berns, K., Mullenders, J., Beijersbergen, R. L., Bernards, R., Voorhoeve, P. M. and Agami, R. 2005. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 121, 849-858. https://doi.org/10.1016/j.cell.2005.04.017
  95. Komiyama, N. H., Watabe, A. M., Carlisle, H. J., Porter, K., Charlesworth, P., Monti, J., Strathdee, D. J., O'Carroll, C. M, Martin, S. J., Morris, R. G., O'Dell, T. J. and Grant, S. G. 2002. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J. Neurosci. 22, 9721-9732. https://doi.org/10.1523/JNEUROSCI.22-22-09721.2002
  96. Komiyama, N. H., Watabe, A. M., Carlisle, H. J., Porter, K., Charlesworth, P., Monti, J., Strathdee, D. J., O'Carroll, C. M., Martin, S. J., Morris, R. G., O'Dell, T. J. and Grant, S. G. 2004. SynGAP regulates spine formation. J. Neurosci. 24, 8862-8872. https://doi.org/10.1523/JNEUROSCI.3213-04.2004
  97. Krapivinsky, G., Medina, I., Krapivinsky, L., Gapon, S. and Clapham, D. E. 2004. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 43, 563-574. https://doi.org/10.1016/j.neuron.2004.08.003
  98. Krontiris, T.G. and Cooper, G. M. 1981. Transforming activity of human tumor DNAs. Proc. Natl. Acad. Sci. USA. 78, 1181-1184. https://doi.org/10.1073/pnas.78.2.1181
  99. Kulkami, S. V., Gish, G., van der Geer, P., Henkemeyer, M. and Pawson, T. 2000. Role of p120 Ras-Gap in directed movement. J. Cell Biol. 149, 457-470. https://doi.org/10.1083/jcb.149.2.457
  100. Kumar, D., Hassan, M. K., Pattnaik, N., Mohapatra, N. and Dixit, M. 2017. Reduced expression of IQGAP2 and higher expression of IQGAP3 correlates with poor prognosis in cancers. PLoS One 12, e0186977. https://doi.org/10.1371/journal.pone.0186977
  101. Kuroda, S., Fukata, M., Kobayashi, K., Nakafuku, M., Nomura, N., Iwamatsu, A. and Kaibuchi, K. 1996. Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. J. Biol. Chem. 271, 23363-23367. https://doi.org/10.1074/jbc.271.38.23363
  102. Lapinski, P. E., Bauler, T. J., Brown, E. J., Hughes, E. D., Saunders, T. L. and King, P. D. 2007. Generation of mice with a conditional allele of the p120 Ras GTPase-activating protein. Genesis 45, 762-767. https://doi.org/10.1002/dvg.20354
  103. Lapinski, P. E., Doosti, A., Salato, V., North, P., Burrows, P. E. and King, P. D. 2018. Somatic second hit mutation of RASA1 in vascular endothelial cells in capillary malformation-arteriovenous malformation. Eur. J. Med. Genet. 61, 11-16. https://doi.org/10.1016/j.ejmg.2017.10.004
  104. Lapinski, P. E., Kwon, S., Lubeck, B. A., Wilkinson, J. E., Srinivasan, R. S., Sevick-Muraca, E. and King, P. D. 2012. RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. J. Clin. Invest. 122, 733-747. https://doi.org/10.1172/JCI46116
  105. Lapinski, P. E., Qiao, Y., Chang, C. H. and King, P. D. 2011. A role for p120 RasGAP in thymocyte positive selection and survival of naive T cells. J. Immunol. 187, 151-163. https://doi.org/10.4049/jimmunol.1100178
  106. Largaespada, D. A., Brannan, C. I., Jenkins, N. and Copeland, N. G. 1996. Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat. Genet. 12, 137-143. https://doi.org/10.1038/ng0296-137
  107. Laycock-van Spyk, S., Thomas, N., Cooper, D. N. and Upadhyaya, M. 2011. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum. Genomics 5, 623-690. https://doi.org/10.1186/1479-7364-5-6-623
  108. Le, D. T., Kong, N., Zhu, Y., Lauchle, J. O., Aiyigari, A., Braun, B. S., Wang, E., Kogan, S. C., Le Beau, M. M., Parada, L. and Shannon, K. M. 2004. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 103, 4243-4250. https://doi.org/10.1182/blood-2003-08-2650
  109. Legius, E., Marchuk, D. A., Collins, F. S. and Glover, T. W. 1993. Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat. Genet. 3, 122-126. https://doi.org/10.1038/ng0293-122
  110. Liu, D., Yang, C., Bojdani, E., Murugan, A. K. and Xing, M. 2013. Identification of RASAL1 as a major tumor suppressor gene in thyroid cancer. J. Natl. Cancer Inst. 105, 1617-1627. https://doi.org/10.1093/jnci/djt249
  111. Liu, Q., Walker, S. A., Gao, D., Taylor, J. A., Dai, Y. F., Arkell, R. S., Bootman, M. D., Roderick, H. L., Cullen, P. J. and Lockyer, P. J. 2005. CAPRI and RASAL impose different modes of information processing on Ras due to contrasting temporal filtering of $Ca^{2+}$. J. Cell Biol. 170, 183-190. https://doi.org/10.1083/jcb.200504167
  112. Lockyer, P. J., Bottomley, J. R., Reynolds, J. S., McNulty, T. J., Venkateswarlu, K., Potter, B. V., Dempsey, C. E. and Cullen, P. J. 1997. Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors $GAP1^{IP4BP}$ and $GAP1^m$ result from the $GAP1^{IP4BP}$ PH domain directing plasma membrane targeting. Curr. Biol. 7, 1007-1010. https://doi.org/10.1016/S0960-9822(06)00423-4
  113. Lockyer, P. J., Kupzig, S. and Cullen, P. J. 2001. CAPRI regulates $Ca^{(2+)}$-dependent inactivation of the Ras-MAPK pathway. Curr. Biol. 11, 981-986. https://doi.org/10.1016/S0960-9822(01)00261-5
  114. Lockyer, P. J., Wennstrom, S., Kupzig, S., Venkateswarlu, K., Downward, J. and Cullen, P. J. 1999. Identification of the ras GTPase-activating protein $GAP1(^m)$ as a phosphatidylinositol-3,4,5-trisphosphate-binding protein in vivo. Curr. Biol. 9, 265-268. https://doi.org/10.1016/S0960-9822(99)80116-X
  115. Lubeck, B. A., Lapinski, P. E., Oliver, J. A., Ksionda, O., Parada, L. F., Zhu, Y., Maillard, I., Chiang, M., Roose, J. and King, P. D. 2015. Cutting edge: Codeletion of the Ras GTPase-activating proteins (RasGAPs) neurofibromin 1 and p120 RasGAP in T cells results in the development of T cell acute lymphoblastic leukemia. J. Immunol. 195, 31-35. https://doi.org/10.4049/jimmunol.1402639
  116. Luo, J., Manning, B. D. and Cantley, L. C. 2003. Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell. 4. 257-262. https://doi.org/10.1016/S1535-6108(03)00248-4
  117. Macmurdo, C. F., Wooderchak-Donahue, W., Bayrak-Toydemir, P., Le, J. Wallenstein, M. B., Milla, C., Teng, J. M., Bernstein, J. A. and Stevenson, D. A. 2016. RASA1 somatic mutation and variable expressivity in capillary malformation/ arteriovenous malformation (CM/AVM) syndrome. Am. J. Med. Genet. 170, 1450-1454. https://doi.org/10.1002/ajmg.a.37613
  118. Maekawa, M., Li, S., Iwamatsu, A., Morishita, T., Yokota, K., Imai, Y., Kohsaka, S., Nakamura, S. and Hattori, S. 1994. A novel mammalian Ras GTPase-activating protein which has phospholipid-binding and Btk homology regions. Mol. Cell. Biol. 14, 6879-6885. https://doi.org/10.1128/MCB.14.10.6879
  119. Maertens, O., Brems, H., Vandesompele, J., De Raedt, T., Heyns, I., Rosenbaum, T., De Schepper, S., De Paepe, A., Mortier, G., Janssens, S., Speleman, F., Legius, E. and Messiaen, L. 2006. Comprehensive NF1 screening on cultured Schwann cells from neurofibromas. Hum. Mutat. 27, 1030-1040. https://doi.org/10.1002/humu.20389
  120. Malik, S. N., Brattain, M., Ghosh, P. M., Troyer, D. A., Prihoda, T., Bedolla, R. and Kreisberg, J. I. 2002. Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin. Cancer Res. 8, 1168-1171.
  121. Manning, B. D. and Cantley, L. C. 2007. AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009
  122. Marchuk, D. A., Saulino, A. M., Tavakkot, R., Swaroop, M., Wallace, M. R., Andersen, L. B., Mitchell, A. L., Gutmann, D. H., Boguski, M. and Collins, F. S. 1991. cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 11, 931-940. https://doi.org/10.1016/0888-7543(91)90017-9
  123. Margolis, B., Li, N., Koch, A., Mohammadi, M., Hurwitz, D. R., Zilberstein, A., Ullrich, A., Pawson, T. and Schlessinger, J. 1990. The tyrosine phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-gamma. EMBO J. 9, 4375-4380. https://doi.org/10.1002/j.1460-2075.1990.tb07887.x
  124. Martin, G. A., Viskochil, D., Bollag, G., McCabe, P. C., Crosier, W. J., Haubruck, H., Conroy, L., Clark, R., O'Connell, P., Cawthon, R. M., Innis, M. A. and McCormick, F. 1990. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63, 843-849. https://doi.org/10.1016/0092-8674(90)90150-D
  125. McClatchey, A. I. 2007. Neurofibromatosis. Annu. Rev. Pathol. 2, 191-216. https://doi.org/10.1146/annurev.pathol.2.010506.091940
  126. McDonald, K. L., O'Sullivan, M. G., Parkinson, J. F., Shaw, J. M., Payne, C. A., Brewer, J. M., Young, L., Reader, D. J., Wheeler, H. T., Cook, R. J., Biggs, M. T., Little, N. S., Teo, C., Stone, G. and Robinson, B. G. 2007. IQGAP1 and IGFBP2: valuable biomarkers for determining prognosis in glioma patients. J. Neuropathol. Exp. Neurol. 66, 205-417.
  127. McLaughlin, S. K., Olsen, S. N., Dake, B., De Raedt, T., Lim, E., Bronson, R. T., Beroukhim, R., Polyak, K., Brown, M., Kuperwasser, C. and Cichowski, K. 2013. The RasGAP gene, RASAL2, is a tumor and metastasis suppressor. Cancer Cell 24, 365-378. https://doi.org/10.1016/j.ccr.2013.08.004
  128. Messiaen, L., Yao, S., Brems, H., Callens, T., Sathienkijkanchai, A., Denayer, E., Spencer, E., Arn, P., Babovic-Vuksanovic, D., Bay, C., Bobele, G., Cohen, B. H., Escobar, L., Eunpu, D., Grebe, T., Greenstein, R., Hachen, R., Irons, M., Kronn, D., Lemire, E., Leppig, K., Lim, C., McDonald, M., Narayanan, V., Pearn, A., Pedersen, R., Powell, B., Shapiro, L. R., Skidmore, D., Tegay, D., Thiese, H., Zackai, E. H., Vijzelaar, R., Taniguchi, K., Ayada, T., Okamoto, F., Yoshimura, A., Parret, A., Korf, B. and Legius, E. 2009. Clinical and mutational spectrum of neurofibromatosis type 1-like syndrome. JAMA. 302, 2111-2118. https://doi.org/10.1001/jama.2009.1663
  129. Min, J., Zaslavsky, A., Fedele, G., McLaughlin, S. K., Reczek, E. E., De Raedt, T., Guney, I., Strochlic, D. E., MacConaill, L. E., Beroukhim, R., Bronson, R. T., Ryeom, S. Hahn, W. C., Loda, M. and Cichowski, K. 2010. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-${\kappa}B$. Nat. Med. 16, 286-294. https://doi.org/10.1038/nm.2100
  130. Mitsuuchi, Y. and Testa, J. R. 2002. Cytogenetics and molecular genetics of lung cancer. Am. J. Med. Genet. 115, 183-188. https://doi.org/10.1002/ajmg.10692
  131. Muhia, M., Feldon, J., Knuesel, I. and Yee, B. K. 2009. Appetitively motivated instrumental learning in SynGAP heterozygous knockout mice. Behav. Neurosci. 123, 1114-1128. https://doi.org/10.1037/a0017118
  132. Muhia, M., Yee, B. K., Feldon, J., Markopoulos, F. and Knuesel, I. 2010. Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP. Eur. J. Neurosci. 31, 529-543. https://doi.org/10.1111/j.1460-9568.2010.07079.x
  133. Muro, R., Nitta, T., Okada, T., Ideta, H., Tsubata, T. and Suzuki, H. 2015. The ras GTPase activating protein Rasal3 supports survival of naive T cells. PLoS One 10, e0119898. https://doi.org/10.1371/journal.pone.0119898
  134. Nabeshima, K., Shimao, Y., Inoue, T. and Koono, M. 2002. Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer Lett. 176, 101-109. https://doi.org/10.1016/S0304-3835(01)00742-X
  135. Nieborowska-Skorska, M., Kopinski, P. K., Ray, R., Hoser, G., Ngaba, D., Flis, S., Cramer, K., Reddy, M. M., Koptyra, M., Penserga, T., Glodkowska-Mrowka, E., Bolton, E., Holyoake, T. L., Eaves, C. J., Cerny-Reiterer, S., Valent, P., Hochhaus, A., Hughes, T. P., van der Kuip, H., Sattler, M., Wiktor-Jedrzejczak, W., Richardson, C., Dorrance, A., Stoklosa, T., Williams, D. A. and Skorski, T. 2012. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119, 4253-4263. https://doi.org/10.1182/blood-2011-10-385658
  136. Nojima, H., Adachi, M., Matsui, T., Okawa, K., Tsukita, S. and Tsukita, S. 2008. IQGAP3 regulates cell proliferation through the Ras/ERK signalling cascade. Nat. Cell Biol. 10, 971-978. https://doi.org/10.1038/ncb1757
  137. Ohta, M., Seto, M., Ijichi, H., Miyabayashi, K., Kudo, Y., Mohri, D., Asaoka, Y., Tada, M., Tanaka, Y., Ikenoue, T., Kanai, F., Kawabe, T. and Omata, M. 2009. Decreased expression of the RAS-GTPase activating protein RASAL1 is associated with colorectal tumor progression. Gastroenterology 136, 206-216. https://doi.org/10.1053/j.gastro.2008.09.063
  138. Osaki. M., Oshimura, M. and Ito, H. 2004. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667-676. https://doi.org/10.1023/B:APPT.0000045801.15585.dd
  139. Ouyang, X., Jessen, W. J., Al-Ahmadie, H., Serio, A. M., Lin, Y., Shih, W. J., Reuter, V. E., Scardino, P. T., Shen, M. M., Aronow, B. J., Vickers, A. J., Gerald, W. L. and Abate-Shen, C. 2008. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res. 68, 2132-2144. https://doi.org/10.1158/0008-5472.CAN-07-6055
  140. Pamonsinlapatham, P., Hadj-Slimane, R., Lepelletier, Y., Allain, B., Toccafondi, M., Garbay, C. and Raynaud, F. 2009. p120-Ras GTPase activating protein (RasGAP): a multi-interacting protein in downstream signaling. Biochimie 91, 320-328. https://doi.org/10.1016/j.biochi.2008.10.010
  141. Pasmant, E., Sabbagh, A., Hanna, N., Masliah-Planchon, J., Jolly, E., Goussard, P., Ballerini, P., Cartault, F., Barbarot, S., Landman-Parker, J., Soufir, N., Parfait, B., Vidaud, M., Wolkenstein, P., Vidaud, D. and France, R. N. 2009. SPRED1 germline mutations caused a neurofibromatosis type 1 overlapping phenotype. J. Med. Genet. 46, 425-430. https://doi.org/10.1136/jmg.2008.065243
  142. Pena, V., Hothorn, M., Eberth, A., Kaschau, N., Parret, A., Gremer, L., Bonneau, F., Ahmadian, M. R. and Scheffzek, K. 2008. The C2 domain of SynGAP is essential for stimulation of the Rap GTPase reaction. EMBO Rep. 9, 350-355. https://doi.org/10.1038/embor.2008.20
  143. Pereira-Leal, J. B. and Seabra, M. C. 2001. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889-901. https://doi.org/10.1006/jmbi.2001.5072
  144. Perucho, M., Goldfarb, M., Shimizu, K., Lama, C., Fogh, J. and Wigler, M. 1981. Human-tumor-derived cell lines contain common and different transforming genes. Cell 27, 467-476. https://doi.org/10.1016/0092-8674(81)90388-3
  145. Price, S. R., Nightingale, M., Tsai, S. C., Williamson, K. C., Adamik, R., Chen, H. C., Moss, J. and Vaughan, M. 1988. Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nucleotide and deduced amino acid sequence of an ADP-ribosylation factor cDNA. Proc. Natl. Acad. Sci. USA. 85, 5488-5491. https://doi.org/10.1073/pnas.85.15.5488
  146. Prior, I. A., Lewis, P. D. and Mattos, C. 2012. A comprehensive survey of Ras mutations in cancer. Cancer Res. 72, 24572467.
  147. Pylayeva-Gupta, Y., Grabocka, E. and Bar-Sagi, D. 2011. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761-774. https://doi.org/10.1038/nrc3106
  148. Ramjaun, A. R. and Downward, J. 2007. Ras and phosphoinositide 3-kinase: partners in development and tumorigenesis. Cell Cycle 6, 2902-2905. https://doi.org/10.4161/cc.6.23.4996
  149. Randazzo, P. A., Nie, Z., Miura, K. and Hsu, V. W. 2000. Molecular aspects of the cellular activities of ADP-ribosylation factors. Sci STKE. 2000, re1. https://doi.org/10.1126/stke.2000.18.pe1
  150. Reiner, D. J. and Lundquist, E. A. 2016. Small GTPases. WormBook. 10, 1895.
  151. Ren, J. G., Li, Z. and Sacks, D. B. 2007. IQGAP1 modulates activation of B-Raf. Proc. Natl. Acad. Sci. USA. 104, 10465-10469. https://doi.org/10.1073/pnas.0611308104
  152. Repasky, G. A., Chenette, E. J. and Der, C. J. 2004. Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trend Cell Biol. 14, 639-647. https://doi.org/10.1016/j.tcb.2004.09.014
  153. Revencu, N., Boon, L. M., Mulliken, J. B., Enjolras, O., Cordisco, M. R., Burrows, P. E., Clapuyt, P., Hammer, F., Dubois, J., Baselga, E., Brancati, F., Carder, R., Quintal, J. M., Dallapiccola, B., Fischer, G., Frieden, I. J., Garzon, M., Harper, J., Johnson-Patel, J., Labreze, C., Martorell, L., Paltiel, H. J., Pohl, A., Prendiville, J., Quere, I., Siegel, D. H., Valente, E. M., Van Hagen, A., Van Hest, L., Vaux, K. K., Vicente, A., Weibel, L., Chitayat, D. and Vikkula, M. 2008. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum. Mutat. 29, 959-996. https://doi.org/10.1002/humu.20746
  154. Revencu, N., Boon, L. M., Mendola, A., Cordisco, M. R., Dubois, J., Clapuyt, P., Hammer, F., Amor, D. J., Irvine, A. D., Baselga, E., Dompmartin, A., Syed, S., Martin-Santiago, A., Ades, L., Collins, F., Smith, J., Sandaradura, S., Barrio, V. R., Burrows, P. E., Blei, F., Cozzolino, M., Brunetti-Pierri, N., Vicente, A., Abramowicz, M., Desir, J., Vilain, C., Chung, W. K., Wilson, A., Gardiner, C. A., Dwight, Y., Lord, D. J., Fishman, L., Cytrynbaum, C., Chamlin, S., Ghali, F., Gilaberte, Y., Joss, S., Boente Mdel, C., Leaute- Labreze, C., Delrue, M. A., Bayliss, S., Martorell, L., Gonzalez-Ensenat, M. A., Mazereeuw-Hautier, J., O'Donnell, B., Bessis, D., Pyeritz, R. E., Salhi, A., Tan, O. T., Wargon, O., Mulliken, J. B. and Vikkul, M. 2013. RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum. Mut. 34, 1632-1641. https://doi.org/10.1002/humu.22431
  155. Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D. and Downward, J. 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527-532. https://doi.org/10.1038/370527a0
  156. Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D. and Downward, J. 1996. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15, 2442-2451. https://doi.org/10.1002/j.1460-2075.1996.tb00602.x
  157. Roof, R. W., Haskell, M. D., Dukes, B. D., Sherman, N., Kinter, M. and Parsons, S. J 1998. Phosphotyrosine (p-Tyr)-dependent and -independent mechanisms of p190 RhoGAPp120 RasGAP interaction: Tyr 1105 of p190, a substrate for c-Src, is the sole p-Tyr mediator of complex formation. Mol. Cell. Biol. 18, 7052-7063. https://doi.org/10.1128/MCB.18.12.7052
  158. Roy, M., Li, Z. and Sacks, D. B. 2004. IQGAP1 binds ERK2 and modulates its activity. J. Biol. Chem. 279, 17329-17337. https://doi.org/10.1074/jbc.M308405200
  159. Roy, M., Li, Z. and Sacks, D. B. 2005. IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol. Cell. Biol. 25, 7940-7952. https://doi.org/10.1128/MCB.25.18.7940-7952.2005
  160. Rumbaugh, G., Adams, J. P., Kim, J. H. and Huganir, R. L. 2006. SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proc. Natl. Acad. Sci. USA. 103, 4344-4351. https://doi.org/10.1073/pnas.0600084103
  161. Sahai, E. and Marshall, C. J. 2002. RHO-GTPases and cancer. Nat. Rev. Cancer 2, 133-142. https://doi.org/10.1038/nrc725
  162. Saito, S., Kawamura, T., Higuchi, M., Kobayashi, T., Yoshita-Takahashi, M., Yamazaki, M., Abe, M., Sakimura, M., Kanda, Y., Kawamura, H., Jiang, S., Naito, M., Yoshizaki, T., Takahashi, M. and Fujii, M. 2015. RASAL3, a novel hematopoietic RasGAP protein, regulates the number and functions of NKT cells. Eur. J. Immunol. 45, 1512-1523. https://doi.org/10.1002/eji.201444977
  163. Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. and Wittinghofer, A. 1997. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338. https://doi.org/10.1126/science.277.5324.333
  164. Schmidt, V. A., Chiariello, C. S., Capilla, E., Miller, F. and Bahou, W. F. 2008. Development of hepatocellular carcinoma in Iqgap2-deficient mice is IQGAP1 dependent. Mol. Cell. Biol. 28, 1489-1502. https://doi.org/10.1128/MCB.01090-07
  165. Segev, N. 2001. Ypt and Rab GTPases: insight into functions through novel interactions. Curr. Opin. Cell Biol. 13, 500-511. https://doi.org/10.1016/S0955-0674(00)00242-8
  166. Serra, E., Rosenbaum, T., Winner, U., Aledo, R., Ars, E., Estivill, X., Lenard, H. G. and Lazaro, C. 2000. Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations. Hum. Mol. Genet. 9, 3055-3064. https://doi.org/10.1093/hmg/9.20.3055
  167. Sewell, J. L. and Kahn, R. A. 1988. Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc. Natl. Acad. Sci. USA. 85, 4620-4624. https://doi.org/10.1073/pnas.85.13.4620
  168. Shen, M. M. and Abate-Shen, C. 2007. Pten inactivation and the emergence of androgen-independent prostate cancer. Cancer Res. 67, 6535-6538. https://doi.org/10.1158/0008-5472.CAN-07-1271
  169. Shih, C., Padhy, L. C., Murray, M. and Weinberg, R. A. 1981. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290, 261-264. https://doi.org/10.1038/290261a0
  170. Shin, Y., Kim, Y. W., Kim, H., Shin, N., Kim, T. S., Kwon, T. K., Choi, J. H. and Chang, J. S. 2018. RASAL3 preferentially stimulates GTP hydrolysis of the Rho family small GTPase Rac2. Biomed. Rep. 9, 241-246.
  171. Shinohara, N., Ogiso, Y., Tanaka, M., Sazawa, A., Harabayashi, T. and Koyanagi, T. 1997. The significance of Ras guanine nucleotide exchange factor, son of sevenless protein, in renal cell carcinoma cell lines. J. Urol. 158, 908-911. https://doi.org/10.1016/S0022-5347(01)64362-3
  172. Spurlock, G., Bennett, E., Chuzhanova, N., Thomas, N., Jim, H. P., Side, L., Davies, S., Haan, E., Kerr, B., Huson, S. M. and Upadhyaya, M. 2009 SPRED1 mutations (Legius syndrome): another clinically useful genotype for dissecting the neurofibromatosis type 1 phenotype. J. Med. Genet. 46, 431-437. https://doi.org/10.1136/jmg.2008.065474
  173. Stenmark, H. and Olkkonen, V. M. 2001. Rab GTPase family. Genome Biol. 2, reviews 3007.1-3007.7.
  174. Stowe, I. B., Mercado, E. L., Stowe, T. R., Bell, E. L., Oses-Prieto, J. A., Hernandez, H., Burlingame, A. L. and McCormick, F. 2012. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes Dev. 26, 1421-1426. https://doi.org/10.1101/gad.190876.112
  175. Sun, D., Yu, F., Ma, Y., Zhao, R., Chen, X., Zhu, J., Zhang, C. Y., Chen, J. and Zhang, J. 2013. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J. Biol. Chem. 288, 9508-9518. https://doi.org/10.1074/jbc.M112.367763
  176. Sun, L., Yao, Y., Shang, Z., Zhan, S., Shi, W., Pan, G., Zhu, X. and He, S. 2018. DAB2IP downregulation enhances the proliferation and metastasis of human gastric cancer cells by depressing the ERK1/2 pathway. Gasroenterol. Res. Pract. 2018, 2968252.
  177. Sung, H., Kanchi, K. L., Wang, X., Hill, K. S., Messina, J. L., Lee, J. H., Kim, Y., Dees, N. D., Ding, L., Teer, J. K., Yang, S., Sarnaik, A. A., Sondak, V. K., Mule, J. J., Wilson, R. K., Weber, J. S. and Kim, M. 2016. Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation. Oncotarget 7, 23885-23896.
  178. Tanaka, K., Nakafumi, M., Satoh, T., Marshall, M. S., Gibbs, J. B., Matsumoto, K. and Toh-e, A. 1990. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 9, 803-807.
  179. Thomas, E. K., Cancelas, J. A., Chae, H. D., Cox, A. D., Keller, P. J., Perrotti, D., Neviani, P., Drucker, B. J., Setchell, K. D. R., Zheng, Y., Harris, C. E. and Williams, D. A. 2007. Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell 12, 467-478. https://doi.org/10.1016/j.ccr.2007.10.015
  180. Trahey, M., Wong, G., Halenbeck, R., Rubinfeld, B., Martin, G. A. Lander, M., Long, C. M., Crosier, W. J., Watt, K., Koths, K. MaCormick, F. 1988. Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242, 1697-1700. https://doi.org/10.1126/science.3201259
  181. Tong, J., Hannan, F., Zhu, Y., Bernards, A. and Zhong, Y. 2002. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat. Neurosci. 5, 95-96. https://doi.org/10.1038/nn792
  182. Touchot, N., Chardin, P. and Tavitian, A. 1987. Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc. Natl. Acad. Sci. USA. 84, 8210-8214. https://doi.org/10.1073/pnas.84.23.8210
  183. Tsuchida, N., Ryder, T. and Ohtsubo, E. 1982. Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine. Science 217, 937-939. https://doi.org/10.1126/science.6287573
  184. Van Aelst, L., Barr, M., Marcus, S., Polverino, A. and Wigler, M. 1993. Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA. 90, 6213-6217. https://doi.org/10.1073/pnas.90.13.6213
  185. van der Geer, P., Henkemeyer, M., Jacks, T. and Pawson, T. 1997. Aberrant Ras regulation and reduced p190 tyrosine phosphorylation in cells lacking p120-Gap. Mol. Cell. Biol. 17, 1840-1847. https://doi.org/10.1128/MCB.17.4.1840
  186. Vanhaesebroeck, B. and Alessi, D. R. 2000. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561-576.
  187. Vazquez, L. E., Chen, H. J., Sokolova, I., Knuesel, I. and Kennedy, M. B. 2004. SynGAP regulates spine formation. J. Neurosci. 24, 8862-8872. https://doi.org/10.1523/JNEUROSCI.3213-04.2004
  188. Viskochil, D., Buchberg, A. M., Xu, G., Cawthon, R. M., Stevens, J., Wolff, R. K., Culver, M., Carey, J. C., Copeland, N. G., Jenkins, N. A., White, R. and O'Connell, P. 1990. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62, 187-192. https://doi.org/10.1016/0092-8674(90)90252-A
  189. Vogel, U. S., Dixon, R. A., Schaber, M. D., Dihl, R. E., Marshall, M. S., Scolnick, E. M., Sigal, I. S. and Gibbs, J. B. 1988. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335, 90-93. https://doi.org/10.1038/335090a0
  190. Vojtek, A. B., Hollenberg, S. M. and Cooper, J. A. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205-214. https://doi.org/10.1016/0092-8674(93)90307-C
  191. Walker, J. A., Gouzi, J. Y., Long, J. B., Huang, S., Maher, R. C., Xia, H., Khalil, K., Ray, A., Van Vactor, D., Bernards, R. and Bernards, A. 2013. Genetic and functional studies implicate synaptic overgrowth and ring gland cAMP/PKA signaling defects in the Drosophila melanogaster neurofibromatosis-1 growth deficiency. PLoS Genet. 9, e1003958. https://doi.org/10.1371/journal.pgen.1003958
  192. Walker, S. A., Kupzig, S., Bouyoucef, D., Davies, L. C., Tsuboi, T., Bivona, T. G., Cozier, G. E., Lockyer, P. J., Buckler, A., Rutter, G. A., Allen, M. J., Philips, M. R. and Cullen, P. J. 2004. Identification of a Ras GTPase-activating protein regulated by receptor-mediated $Ca^{2+}$ oscillations. EMBO J. 23, 1749-1760. https://doi.org/10.1038/sj.emboj.7600197
  193. Wallace, M. R., Marchuk, D. A., Andersen, L. B., Letcher, R., Odeh, H. M., Saulino, A. M., Fountain, J. W., Brereton, A., Nicholson, J., Mitchell, A. L. Brownstein, B. H. and Collins, F. S. 1990. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249, 181-186. https://doi.org/10.1126/science.2134734
  194. Wan, Y. J., Yang, Y., Leng, Q. L., Lan, B., Jia, H. Y., Liu, Y. H., Zhang, C. Z. and Cao, Y. 2014. Vav1 increases Bcl-2 expression by selective activation of Rac2-Akt in leukemia T cells. Cell. Signal. 26, 2202-2209. https://doi.org/10.1016/j.cellsig.2014.05.015
  195. Wang, S., Watanabe, T., Noritake, J., Fukata, M., Yoshimura, T., Itoh, N., Harada, T., Nakagawa, M., Matsuura, Y., Arimura, N. and Kaibuchi, K. 2007. IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. J. Cell Sci. 120, 567-577. https://doi.org/10.1242/jcs.03356
  196. Wang, X. X., Li, X. Z., Zhai, L. Q., Liu, Z. R., Chen, X. J. and Pei, Y. 2013. Overexpression of IQGAP1 in human pancreatic cancer. Hepatobiliary Pancreat. Dis. Int. 12, 540-545. https://doi.org/10.1016/S1499-3872(13)60085-5
  197. Wang, Y., Boguski, M., Riggs, M., Rodgers, L. and Wigler, M. 1991. sar1, a gene from Schizosaccharomyces pombe encoding a protein that regulates ras1. Cell Regul. 2, 453-465. https://doi.org/10.1091/mbc.2.6.453
  198. Wang, Z., Tseng, C. P., Pong, R. C., Chen, H., McConnell, J. D., Navone, N. and Hsieh, J. T. 2002. The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2. J. Biol. Chem. 277, 12622-12631. https://doi.org/10.1074/jbc.M110568200
  199. Warne, P. H., Viciana, P. R. and Downward, J. 1993. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352-353. https://doi.org/10.1038/364352a0
  200. Weeks, A., Okolowsky, N., Golbourn, B., Ivanchuk, S., Smith, C. and Rutka, J. T. 2012. ECT2 and RASAL2 mediate mesenchymal-amoeboid transition in human astrocytoma cells. Am. J. Pathol. 181, 662-674. https://doi.org/10.1016/j.ajpath.2012.04.011
  201. Weis, K. 2003. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441-451. https://doi.org/10.1016/S0092-8674(03)00082-5
  202. Weissbach, L., Settleman, J., Kalady, M. F., Snijders, A. J., Murthy, A. E., Yan, Y. X. and Bernards, A. 1994. Identification of a human rasGAP-related protein containing calmodulin-binding motifs. J. Biol. Chem. 269, 20517-20521.
  203. Welti, S., Fraterman, S., D'Angelo, I., Wilm, M. and Scheffzek, K. 2007. The sec14 homology module of neurofibromin binds cellular glycerophospholipids: mass spectrometry and structure of a lipid complex. J. Mol. Biol. 366, 551-562. https://doi.org/10.1016/j.jmb.2006.11.055
  204. Wennerberg, K. and Der, C. J. 2004. Rho-family GTPases: it's not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301-1312. https://doi.org/10.1242/jcs.01118
  205. Wennerberg, K., Rossman, K. L. and Der, C. J. 2005. The Ras superfamily at a glance. J. Cell Sci. 118, 843-846. https://doi.org/10.1242/jcs.01660
  206. Westbrook, T. F., Martin, E. S., Schlabach, M. R., Leng, Y., Liang, A. C., Feng, B., Zhao, J. J., Roberts, T. M., Mandel, G., Hannon, G. J., Depinho, R. A., Chin, L. and Elledge, S. J. 2005. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837-848. https://doi.org/10.1016/j.cell.2005.03.033
  207. White C. D., Khurana, H., Gnatenko, D. V., Li, Z., Odze, R. D., Sacks, D. B. and Schmidt, V. A. 2010. IQGAP1 and IQGAP2 are reciprocally altered in hepatocellular carcinoma. BMC Gastroenterol. 10, 125. https://doi.org/10.1186/1471-230X-10-125
  208. White, C. D., Brown, M. D. and Sacks, D. B. 2009. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett. 583, 1817-1824. https://doi.org/10.1016/j.febslet.2009.05.007
  209. White, C. D., Erdemir, H. H. and Sacks, D. B. 2012. IQGAP1 and its binding proteins control diverse biological functions. Cell. Signal. 24, 826-834. https://doi.org/10.1016/j.cellsig.2011.12.005
  210. Wilde, A. 1., Lizarraga, S. B., Zhang, L., Wiese, C., Gliksman, N. R., Walczak, C. E. and Zheng, Y. 2001. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat. Cell Biol. 3, 221-227. https://doi.org/10.1038/35060000
  211. Wong-Staal, F., Dalla-Favera, R., Gelmann, E. P., Manzari, V., Szala, S., Josephs, S. F. and Gallo, R. C. 1981. The v-sis transforming gene of simian sarcoma virus is a new onc gene of primate origin. Nature 294, 273-275. https://doi.org/10.1038/294273a0
  212. Xie, D., Gore, C., Liu, J., Pong, R. C., Mason, R., Hao, G., Long, M., Kabbani, W., Yu, L., Zhang, H., Chen, H., Sun, X., Boothman, D. A., Min, W. and Hsieh, J. T. 2010. Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc. Natl. Acad. Sci. USA. 107, 2485-2490. https://doi.org/10.1073/pnas.0908133107
  213. Xie, D., Gore, C., Zhou, J., Pong, R. C., Zhang, H., Yu, L., Vessella, R. L., Min, W. and Hsieh, J. T. 2009. DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proc. Natl. Acad. Sci. USA. 106, 19878-19883. https://doi.org/10.1073/pnas.0908458106
  214. Xie, Y., Yan, J., Cutz, J. C., Rybak, A. P., He, L., Wei, F., Kapoor, A., Schmidt, V. A., Tao, L. and Tang, D. 2012. IQGAP2, A candidate tumour suppressor of prostate tumorigenesis. Biochim. Biophys. Acta. 1822, 875-884. https://doi.org/10.1016/j.bbadis.2012.02.019
  215. Xu, G.F., Lin, B., Tanaka, K., Dunn, D., Wood, D., Gesteland, R., White, R., Weiss, R. and Tamanoi, F. 1990. IQGAP1 and IQGAP2 are reciprocally altered in hepatocellular carcinoma. Cell 63, 835-841. https://doi.org/10.1016/0092-8674(90)90149-9
  216. Xu, G. F., O'Connell, P., Viskochil, D., Cawthon, R., Robertson, M., Culver, M., Dunn, D., Stevens, J., Gesteland, R., White, R. and Weiss, R. 1990. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62, 599-608. https://doi.org/10.1016/0092-8674(90)90024-9
  217. Xu. X., Tan, X., Tampe, B., Nyamsuren, G., Liu, X., Maier, L. S., Sossalla, S., Kalluri, R., Zeisberg, M., Hasenfuss, G. and Zeisberg, E. M. 2015. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc. Res. 105, 279-291. https://doi.org/10.1093/cvr/cvv015
  218. Yamamoto, T., Matsui, T., Nakafuku, M., Iwamatsu, A. and Kaibuchi, K. 1995. A novel GTPase-activating protein for R-Ras. J. Biol. Chem. 270, 30557-30561. https://doi.org/10.1074/jbc.270.51.30557
  219. Yang, F. C., Kapur, R., King, A. J., Tao, W., Kim, C., Borneo, J., Breese, R., Marshall, M., Dinauer, M. C. and Williams, D. A. 2000. Rac2 stimulates Akt activation affecting BAD/ Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity 12, 557-568. https://doi.org/10.1016/S1074-7613(00)80207-1
  220. Yang, Y., Zhao, W., Xu, Q. W., Wang, X. S., Zhang, Y. and Zhang, J. 2014. IQGAP3 promotes EGFR-ERK signaling and the growth and metastasis of lung cancer cells. PLoS One 9, e97578. https://doi.org/10.1371/journal.pone.0097578
  221. Yano, M., Toyooka, S., Tsukuda, K., Dote, H., Ouchida, M., Hanabata, T., Aoe, M., Date, H., Gazdar, A. F. and Shimizu, N. 2005. Aberrant promoter methylation of human DAB2 interactive protein (hDAB2IP) gene in lung cancers. Int. J. Cancer 113, 59-66. https://doi.org/10.1002/ijc.20531
  222. Yarwood, S., Bouyoucef-Cherchalli, D., Cullen, P. J. and Kupzig, S. 2006. The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling. Biochem. Soc. Trans. 34, 846-850. https://doi.org/10.1042/BST0340846
  223. Zhang, D. and Aravind, L. 2010. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene 469, 18-30. https://doi.org/10.1016/j.gene.2010.08.006
  224. Zhang, D. and Aravind, L. 2012. Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment. Cell Cycle 11, 3861-3875. https://doi.org/10.4161/cc.22068
  225. Zhang, H., He, Y., Dai, S., Xu, Z., Luo, Y., Wan, T., Luo, D., Jones, D., Tang, S., Chen, H., Sessa, W. C. and Min, W. 2008. AIP1 functions as an endogenous inhibitor of VEGFR2-mediated signaling and inflammatory angiogenesis in mice. J. Clin. Invest. 118, 3904-3916. https://doi.org/10.1172/JCI36168
  226. Zhang, H., Zhang, R., Luo, Y., D'Alessio, A., Pober, J. S. and Min, W. 2004. AIP1/DAB2IP, a novel member of the Ras-GAP family, transduces TRAF2-induced ASK1-JNK activation. J. Biol. Chem. 279, 44955-44965. https://doi.org/10.1074/jbc.M407617200
  227. Zhang, J., Guo, J., Dzhagalov, I. and He, Y. W. 2005. An essential function for the calcium-promoted Ras inactivator in Fc gamma receptor-mediated phagocytosis. Nat. Immunol. 6, 911-919. https://doi.org/10.1038/ni1232
  228. Zhang, R., He, X., Liu, W., Lu, M., Hsieh, J. T. and Min, W. 2003. AIP1 mediates TNF-alpha-induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. J. Clin. Invest. 111, 1933-1943. https://doi.org/10.1172/JCI200317790
  229. Zhang, X. F., Settleman, J., Kyriakis, J. M., Takeuchi-Suzuki, E., Elledge, S. J., Marshall, M. S., Bruder, J. T., Rapp, U. R. and Avruch, J. 1993. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308-318. https://doi.org/10.1038/364308a0